

FROM HOW MUCH TO HOW MANY

Managing Complexity in Routine Design

Automation

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 29 April 2010 om 16.45 uur

door

Juan Manuel Jauregui Becker
geboren op 20 May 1980

te Merida, Venezuela

Dit proefschrift is goedgekeurd door:

Prof. dr. ir. F.J.A.M. van Houten promotor

FROM HOW MUCH TO HOW MANY

Managing Complexity in Routine Design

Automation

PhD Thesis

By Juan Manuel Jauregui Becker at the Faculty of Engineering Technology
(CTW) of the University of Twente, Enschede, the Netherlands.
Enschede, 29 April 2010

De promotiecommissie:

Prof. dr. F. Eising Universiteit Twente, voorzitter, secretaris
Prof. dr. ir. F.J.A.M. van Houten Universiteit Twente, promotor
Dr. ir. G. Still Universiteit Twente
Prof. dr. ir. R. Akkerman Universiteit Twente
Prof. dr. ir. J. van Hillegersberg Universiteit Twente
Prof. dr. ir. F.W. Jansen Technische Universiteit Delft
Prof. dr. T. Tomiyama Technische Universiteit Delft
Prof. dr. ir. A.C. Brombacher Technische Universiteit Eindhoven
Prof. dr. T. Kjellberg KTH Royal Institute of Technology

Keywords: Computational Design Synthesis, Routine Design, Complexity Management

ISBN 978-90-365-2989-1

Copyright © Juan Manuel Jauregui Becker, 2010
Cover design by Diruji Dugarte Manoukian
Printed by Gildeprint, Enschede
All rights reserved.

A Diru,

a mis papas y hermanos

Summary

Advances in technology and competitive markets are driving the development of
products with shorter times to market. In addition to this, products are becoming
more complex, with more functionality, and yet lower prices. This has motivated
the development of computer systems that support different phases of the design
process, one of which is the synthesis process. This process consists of generating
candidate design solutions to design problems.

This thesis researches the development of software that supports synthesis
processes. This type of software is denoted in this thesis as Computer Aided
Synthesis, or CAS. The scope lies within the boundaries of routine design problems
of artifacts. In such problems, designers have all knowledge available about the
components, parameters, relations and constrains that are used for solving them.

Synthesis processes for generating solutions to routine design problems consist
of two tasks: (1) generating networks of components and (2) attributing values
to unknown parameters. The exact strategy determining how these tasks are
performed depends on the distribution of requirements throughout the different
levels of detail of the problem, e.g. only on top, only at the bottom or as a
mix. However, this relation is not known a priori and is different for different
distributions of design requirements. From here that complexity in routine de-
sign is attributed to the distribution of design requirements along the different
abstractions of the problem. Determining the dependency between design com-
plexity and synthesis strategies is the main challenge of this research. The result
is a new complexity management approach: Computational Design Synthesis by
Complexity Management. This approach integrates six methods, which have all
been developed during this research.

The first step of this approach consists in formulating a design problem us-
ing the FBS based Formulation method. This method uses FBS representations
to aid designers in the process of determining which are the exact components,
parameters, relations and constraints playing a role in the design problem.

The formal design problem is then decomposed by applying the ADT based

VII

Decomposition method. This results in a new problem formulation consisting
different levels of abstraction. The decomposition is both functional and physi-
cal and is based in the structure of the functions, components, parameters and
relations in the problem.

The decomposed model is then translated into a Topology Abstraction Repre-
sentation Diagram (TARD). TARD consists of four building blocks: Elements,
C-relations, H-relations and ACO-relations. Elements represent individual com-
ponents of the design problem, and group the set of parameters used in its de-
scription. C-relations represent the connectedness of the elements in the topology.
H-relations model how a group of C-relations are related to describe the composi-
tion of a higher level element. ACO-relations are used to model analysis relations,
physical coherence constraints and objective functions. The two most important
characteristics of TARD are: it supports the representation of different distri-
butions of design requirements for one problem, and it supports top-down and
bottom-up synthesis strategies.

The next step in the approach is to determine the Topology System of Equa-
tions (ToSE) of the TARD model. ToSE consists of algebraic equations that
define how the instantiation of one component is constrained by the instantiation
of other components. These equations model the relation between components
within one level of detail (balance equations), as well as between different levels of
detail (vertical equations) in one TARD model. This method was developed in this
research with the goal of translating topology characteristics of design problems
into equations that can be handled by existing constraint solving algorithms.

Determining a synthesis strategy is done in this approach by applying the Lo-
cal Grammar Method and the KGM Solving Algorithm. The first method specifies
how to generate networks of components in one level of detail. The second algo-
rithm determines how to proceed within different levels of abstraction by solving
ToSE. Furthermore, this algorithm also determines the order in which the design
parameters are solved.

Several examples describe the application of these techniques, while two soft-
ware implementations demonstrate how the collaborative usage of these tech-
niques leads to the automation of a routine design problem. The first imple-
mentation automates the design of cooling systems for injection molding. By
combining these methods with specialized algorithms, the software is capable of
automatically generating cooling systems for a given mold. A user interface de-
veloped with SolidWorks© API allows users to input their problems by specifying
the geometry of the mold and its characteristics. The second implementation is
a toolbox that implements TARD, ToSE, the Local Grammar Method and the
KGM Solving Algorithm in a generic fashion. After entering the TARD model
of a given design problem, this toolbox is capable of automatically generating
candidate solutions.

The developed approach has the advantage that it permits the reuse of existing
problem formulations, the use of standard solving methods, and the development
of computer based design tools.

VIII

Samenvatting

Technologische ontwikkelingen en economische concurrentie zijn de aanjagers van
een verkorting van de time to market. Daarnaast krijgen producten meer func-
tionaliteit, stijgt hun complexiteit en staan prijzen onder druk. Deze tendensen
zijn de drijfveren voor de ontwikkeling van computersystemen die verschillende
fasen van het ontwerpproces ondersteunen. Een van die fasen is het synthese
proces, waarin kandidaat-oplossingen voor ontwerpproblemen worden ontworpen.

Dit proefschrift onderzoekt de ontwikkeling van software die synthese pro-
cessen ondersteunt. Dit type software wordt in dit proefschrift aangeduid als
Computer Aided Synthesis, of CAS. Het toepassingsgebied ligt binnen de grenzen
van het routinematige ontwerpen van artefacten. In dergelijke problemen hebben
ontwerpers alle kennis beschikbaar over te gebruiken componenten, parameters,
relaties en de beperkingen die gelden voor het toepassen.

Synthese processen voor het genereren van oplossingen voor problemen in
routine-ontwerp bestaat uit twee taken: (1) het genereren de relaties tussen com-
ponenten in de vorm van netwerken en (2) het toe kennen vaan waarden aan
onbekende parameters. De strategie voor de uitvoering van deze taken hangt af
van de verdeling van de eisen en randvoorwaarden over de verschillende detail-
niveaus van het probleem, bijv. alleen globale eisen, alleen op het laagste detail
niveau of als een mix. Deze verhouding is echter niet a priori bekend, en ver-
schillend voor verschillende verdelingen van randvoorwaarden over het ontwerp.
Van daar, dat de complexiteit in de routine ontwerp wordt veroorzaakt door de
verdeling van de ontwerpeisen over de verschillende abstracties van het probleem.
Het bepalen van de afhankelijkheid tussen ontwerp de complexiteit en de syn-
these strategien is de belangrijkste uitdaging van dit onderzoek. Het resultaat
is een aanpak, de zogenaamde Computational Design Synthesis by Complexity
Management, waarin zes methoden worden gentegreerd.

De eerste stap van deze aanpak is het formuleren van een ontwerpprobleem met
de FBS based Formulation methode. Deze methode maakt gebruik van FBS rep-
resentaties om ontwerpers te steunen bij het bepalen van de exacte componenten,

IX

parameters, relaties en beperkingen die een rol spelen in het ontwerpprobleem.
Het geformuleerde probleem wordt vervolgens opgedeeld door het toepassen

van de ADT based Decomposition methode. Dit resulteert in een nieuwe prob-
leemformulering, bestaande uit verschillende niveaus van abstractie. De ontleding
is zowel functioneel als fysiek en wordt beschreven met een structuur van functies,
onderdelen, parameters en relaties uit het probleem.

Het ontlede model wordt vervolgens vertaald in een Topology Abstraction Rep-
resentation Diagram (TARD). TARD bestaat uit vier bouwstenen: Elementen,
C-relaties, H-relaties en ACO-relaties. Elementen vormen de afzonderlijke on-
derdelen van het ontwerpprobleem en groeperen de parametersets van het prob-
leem. C- relaties modeleren de verbondenheid van de elementen in de topologie.
H-relaties beschrijven hoe C-relaties zijn gerelateerd aan de samenstelling van
een hoger niveau element. ACO-relaties worden gebruikt om analysemethoden,
fysieke beperkingen en de samenhang met doelfuncties te modeleren. De twee
belangrijkste kenmerken van TARD zijn: het ondersteunt de beschrijving van de
verschillende eisenverdelingen van het ontwerpprobleem en helpt het definiren van
top-down en bottom-up synthesestrategien.

De volgende stap in de aanpak is het bepalen van het Topology System of
Equations (ToSE) van de TARD model. ToSE bestaat uit algebrasche vergeli-
jkingen die bepalen hoe de instantiering van een component is gerelateerd aan de
instantiering van andere componenten. Deze vergelijkingen modeleren de relaties
tussen de componenten op n detailniveau (balansvergelijkingen), alsmede tussen
de verschillende detailniveaus (verticale vergelijkingen) in een TARD model. Deze
methode maakt het mogelijk om de topologie van het ontwerpprobleem te ver-
talen in vergelijkingen die vervolgens kunnen worden behandeld door bestaande
constraint solving algoritmen.

Het bepalen van een synthesestrategie wordt gedaan door de toepassing van
de Local Grammar methode en de KGM Solving algoritme. De eerste methode
beschrijft hoe netwerken van componenten gegenereerd worden. Het tweede algo-
ritme bepaalt hoe binnen verschillende abstractieniveaus verder wordt gegaan met
het oplossen van ToSE. Bovendien bepaalt dit algoritme ook de volgorde waarin
ontwerpparameters worden opgelost.

Verschillende voorbeelden beschrijven de toepassing van deze technieken en
twee software-implementaties laten zien hoe deze technieken leiden tot de au-
tomatisering van ontwerpproblemen. De eerste implementatie automatiseert het
ontwerpen van koelsystemen voor spuitgietmatrijzen. Door het combineren van de
methoden met gespecialiseerde algoritmen, is de software in staat om automatisch
koelsystemen te genereren voor een bepaalde matrijs. Een gebruikersinterface is
ontwikkeld met de SolidWorks© API waarmee gebruikers in staat zijn om hun
problemen te definiren door de geometrie in te voeren en de eigenschappen ervan.
De tweede uitvoering is een gereedschapskist die implementeert TARD, ToSE ,
de Local Grammar methode en het oplossen van KGM Solving algoritme op een
generieke manier. Na het invoeren van een TARD model van een bepaald on-
twerpprobleem, is de toolbox geschikt om kandidaat-oplossingen te genereren.

X

Table of Contents

Summary VII

Samenvatting IX

Table of Contents XI

List of Figures XVII

List of Tables XXI

List of Abbreviations XXI

I Research Introduction 1

1 Vision and Research Description 3
1.1 Context: Computers in Engineering Design 3

1.1.1 The Engineering Design Process 4
1.1.2 The Role of Computers in Design 6

1.2 Focus: Computer Aided Synthesis 6
1.2.1 Story Board: Designing Wind Turbines with CAS 7
1.2.2 CAS Properties . 8
1.2.3 CAS Development Challenges 10

1.3 Scope: Artifactual Routine Design 10
1.3.1 FBS model . 10
1.3.2 Classification of Design Problem 11

1.4 Vision: Bottom-up Approach to CAS 13
1.5 Challenge: Complexity in Routine Design 14

1.5.1 Modeling Design Artifacts 14

XI

TABLE OF CONTENTS

1.5.2 Modeling Design Problems 15
1.5.3 Synthesis in Routine Design 15
1.5.4 Complexity in Routine Design Problems 16

1.6 Research: Managing Complexity In Routine Design 17
1.6.1 Hypothesis . 17
1.6.2 Case Study . 17
1.6.3 Complexity Management Approach 18

2 Research Positioning 19
2.1 Field: Computational Design Synthesis 19

2.1.1 General Method . 20
2.1.2 Grammars . 21
2.1.3 Agent Based Design . 22
2.1.4 Evolutionary Approaches 23
2.1.5 PaRC . 24

2.2 The Problem: Complexity Management 25
2.2.1 Complexity in Axiomatic Design 26
2.2.2 Completeness of Information 27
2.2.3 Complexity of Multi-disciplinarity 28
2.2.4 Large Parametric Spaces . 29

2.3 Case Study: CSIM Design . 30
2.3.1 Cooling Design . 30
2.3.2 Related Work . 32

II Founding Frameworks 33

3 Information and Models 35
3.1 Introduction . 35
3.2 Types of Information . 35
3.3 Problem Formulation . 38

3.3.1 Example: CSIM Design . 39
3.4 Models in Artifactual Routine Design 40

3.4.1 Models of Descriptions . 40
3.4.2 Models of Relations . 43

3.5 Common Design Problem Formulations 44
3.5.1 Parametric Design . 44
3.5.2 Configuration Design . 44
3.5.3 Layout Design . 45
3.5.4 Shaping . 45
3.5.5 Topology Generation . 45

XII

TABLE OF CONTENTS

4 Design Structure and Complexity 47
4.1 Introduction . 47
4.2 Structuring Routine Design Problems 48

4.2.1 Structuring Framework . 49
4.2.2 Example: Spring Design . 51

4.3 Complexity in Routine Design . 53
4.3.1 Translating ADT Terms . 53
4.3.2 Model of Complexity . 53
4.3.3 Complexity of Problem Classes 54
4.3.4 Complexity of Problem Instances 56
4.3.5 Example: CSIM Design . 58

III Theories and Methods 59

5 Managing Complexity I: Information Contents 61
5.1 Introduction . 61
5.2 Method 1: FBS based Formulation 61

5.2.1 Example: CSIM Design . 63
5.3 Method 2: ADT based Decomposition 69

5.3.1 Functional Domain . 69
5.3.2 Physical Domain . 71
5.3.3 Example: CSIM Design . 72

6 Managing Complexity II: Representations 79
6.1 Introduction . 79

6.1.1 Multi-level Networks . 80
6.1.2 Graph Grammars . 80

6.2 Theory 1: TARD Model . 81
6.2.1 Base definitions . 83
6.2.2 Building Blocks . 83
6.2.3 Types of abstraction-groups 88

6.3 Example: Belt System Design . 90
6.3.1 Proximity Relation . 92

7 Managing Complexity III: Manipulating Elements 93
7.1 Introduction . 93
7.2 Theory 2: Topology System of Equations 94

7.2.1 Balance Equations . 94
7.2.2 Vertical Equations . 96

7.3 Method 4: The Local Grammar Method 98
7.3.1 Grammar Rules and their Application 99
7.3.2 Adding Complementary Rules 99
7.3.3 Guiding the Search Process 100

XIII

TABLE OF CONTENTS

7.3.4 Creation vs. recognition . 101
7.4 Example: XRF Optical Path Design 102

7.4.1 TARD Model . 102
7.4.2 Assembling ToSE . 103
7.4.3 Generating Sequences . 105

8 Managing Complexity IV: Manipulating Parameters 107
8.1 Introduction . 107

8.1.1 Knowledge Graphs (KG) 107
8.2 Method 5: KGM Solving Algorithm 108

8.2.1 Knowledge Graph Matrix (KGM) 109
8.2.2 Effort and Influence . 109
8.2.3 Parameter States . 110
8.2.4 KGM Transformations . 111
8.2.5 Identifying Driver and Driven 112
8.2.6 The Algorithm . 113

8.3 Benchmarking . 115
8.4 Example: Compression Spring . 115

IV Results and Conclusions 121

9 Integration and Implementation 123
9.1 Introduction . 123
9.2 Methodology: CDS-Complexity Management 123

9.2.1 Initialization Phase . 124
9.2.2 Generation Process . 125
9.2.3 Generic Implementation . 127
9.2.4 Example: Drive train Design 127

9.3 Automating CSIM Design . 132
9.3.1 Synthesis Strategy . 132
9.3.2 Results . 139

10 Conclusions & Recommendations 141
10.1 Conclusions . 141
10.2 Recommendations . 146

Acknowledgments 149

List of References 151

XIV

TABLE OF CONTENTS

V Appendices 159

A TARD and ToSE Example 161
A.1 Equation Generator . 161
A.2 TARD Model . 161
A.3 ToSE Equations . 162
A.4 Generating Solutions . 163

B ToSE for CSIM 165
B.1 TARD Model . 165

B.1.1 Elements . 165
B.1.2 C-Relations . 165
B.1.3 Abstraction-groups . 165

B.2 Balance equations . 166
B.3 Vertical equations . 170
B.4 Summary . 170

C Generic CDS-CS Implementation 171
C.1 TARD Implementation . 171
C.2 ToSE Implementation . 173

XV

List of Figures

1.1 Models of the design process . 5
1.2 Photo and topologic diagram of a wind turbine 7
1.3 FBS example of a crank compression mechanism. 12
1.4 Design problem classification. 12
1.5 Bottom-up approach to computational synthesis research. 14
1.6 The pyramid of Gerrit Muller [48] to model artifacts 15
1.7 Modeling design problems as incomplete representations of artifacts 16
1.8 Synthesis: from incomplete to complete descriptions 16

2.1 Computational design synthesis diagram [8]. 20
2.2 Grammar of truss design. 21
2.3 CDS and agents in A-Design [7]. 23
2.4 Genetic algorithm and the computational synthesis method. 24
2.5 PaRC: Knowledge engineering method, from [57]. 25
2.6 Complexity as function of knowledge completeness, from [80]. . . . 28
2.7 Complexity from the viewpoint of knowledge structure [78]. 29
2.8 Injection mold example. 30
2.9 Example of a cooling System for injection molding. 31

3.1 Types of information in routine design. 36
3.2 Information flow in analysis and synthesis processes 37
3.3 Problem formulation of CSIM design. 40
3.4 Example of a field attribute. 41
3.5 Super quadric of a toroid, from [26]. 42
3.6 Example shape graph of electric resistor symbol. 43

4.1 Structure of problems in modeling natural phenomena. 49
4.2 Framework to structure design problem. 50

XVII

LIST OF FIGURES

4.3 Problem structure dependencies. 51
4.4 structure of spring design example. 52
4.5 Complexity map for routine design problems. 54
4.6 Three states of problem classes according to its complexity. 55

5.1 The FBS based design formulation method. 62
5.2 Overview of the design exploration method in the design of cooling

systems for injection molding. 64
5.3 FBS description of CSIM design. 65
5.4 Embodiment definition in FBS based formulation method. 67
5.5 The ADT based decomposition method. 70
5.6 Problem formulation of CSIM design. 72
5.7 Reformulation of CSIM. 74
5.8 Resulting decomposed problem formulations. 75
5.9 Primitives in functional element “Absorber Channel”. 76
5.10 Results of decomposing the CSIM design problem. 78

6.1 Vertical assembly relation in a multilevel network. 80
6.2 Example of horizontal grammar representation. 81
6.3 Example for the general usage of Elements, C-relation and H-

relations on two levels of detail. 82
6.4 Design problem structure using TARD. 82
6.5 Example of bi-level TARD Diagram. 84
6.6 Connectivity relations. 85
6.7 C-relations: class and instance. 86
6.8 Parametric rules in the C-relation relate the parameters of the con-

nected Elements. 86
6.9 H-relations: class and instance. 88
6.10 Simple and complex abstraction-groups. 89
6.11 Example of representation of a pulley transmission system. 90
6.12 Topological network of the belt system with two levels of detail. . . 91
6.13 A conceptual double belt transmission: one input, two outputs. . . 92

7.1 Two abstraction-groups. 95
7.2 Example of complex abstraction group. 96
7.3 Relational paths of vertical equations in a two level TARD model. 98
7.4 Local grammar rules for the elements in Figure 6.10(b). 99
7.5 Example of an adding a grammar rule in the local grammar method.100
7.6 Class and instance representations of an abstraction-group. 102
7.7 Schematic of the optical path design of an XRF spectrometer. . . . 103
7.8 TARD model of XRF optical path design. 103
7.9 Complementary grammar rule in XRF design. 105
7.10 Example generation of a sequence for the XRF optical Path design. 106

XVIII

LIST OF FIGURES

8.1 Knowledge graph of equation 8.1 and equation 8.2. 108
8.2 KGM solving algorithm. 113
8.3 Example of strategy. 114
8.4 Knowledge graph of spring design. 117
8.5 Instantiating order of parameters in spring example. 119

9.1 General procedures in CDS by Complexity Management. 124
9.2 Choosing abstraction groups. 126
9.3 Generation algorithm for local grammar method. 126
9.4 Identifying and solving parameter values. 127
9.5 Sketch of a drivetrain in a car. 128
9.6 TARD representation of drive train example. 129
9.7 The resulting 2nd order instantiated network representing a so-

lution of the generation process (generated automatically by the
implementation.) . 131

9.8 TARD model of CSIM problem. 133
9.9 Method for automating CSIM design. 134
9.10 Mold of telephone used as example. 135
9.11 Sections of the telephone voxel mesh model. 136
9.12 Section of telephone mold with points. 137
9.13 Group of aleatory selected absorber channels in the telephone mold. 138
9.14 Solution space of CSIM design for telephone mold. 139
9.15 CSIM design solutions for telephone mold. 140

10.1 Integrated approach to complexity management. 143

A.1 TARD model of the design of equations 162
A.2 Rues in equation generator grammar 164
A.3 Example sequence generation . 164

B.1 TARD model of CSIM problem. 167

C.1 Architecture of the computer implementation of TARD building
blocks: class and instance. 172

C.2 UML diagram of basic TARD building blocks. 172
C.3 Class structure of TARD building blocks 173
C.4 Diagrams of the equation and cardinality classes 174
C.5 Object references (pointers) for ToSE equations. 175

XIX

List of Tables

3.1 Common artifactual routine design problems. 44

5.1 State based performance and scenario mapping. 66
5.2 Design parameters in CSIM . 68
5.3 Logic relations determining the color of Points. 77

8.1 Efforts and influences at problem class. 110
8.2 Efforts and influences for problem instance with D known 112
8.3 Result of KGM transformations in example. 114
8.4 Parameters considered in compression spring design. 116
8.5 KGM of compression spring design. 118
8.6 Initial efforts and influences. 118
8.7 Problem instance of spring design example. 119
8.8 Results of KGM transformation in example. 120

9.1 List of attributes of a voxel element. 135
9.2 Logic relations defining the color of points. 137

XXI

List of Abbreviations

CAS Computer Aided Synthesis
DPD Digital Product Development
CAD Computer Aided Design
CAE Computer Aided Engineering
FEA Finite Element Analysis
CFD Computational Fluid Dynamics
MES Mechanical Event Simulations
CAM Computer Aided Manufacturing
PDM Product Data Management
CDS Computational Design Synthesis
ADT Axiomatic Design Theory
CDS Computational Design Synthesis
FBS Functional Behavior/State Structure
FBPSS Function Behavior Principle State Structure
FRs Functional Requirements
DPs Design Parameters
CSIM Cooling System design for Injection Molding
ATC Advanced Technology Center
GA Genetic Algorithms
PaRC Parameters, Resolve rules and Constrain rules
ADT Axiomatic Design Theory
TARD Topology Abstraction Representational Diagram
ToSE Topology System of Equations
DM Design Matrix
CDS-CM Computational Design Synthesis by Complexity Management//

XXIII

Part I

Research Introduction

1

Chapter 1
Vision and Research
Description

This thesis presents the results of researching the complexity of artifactual
routine design problems. The main motivation is the future development
of general purpose design automation systems. Design complexity is re-
searched as a means of developing methods to automate design problems.
This chapter introduces the research by describing its context, focus and
scope. It finalizes with a brief description of the research approach.

1.1 Context: Computers in Engineering Design

From paperclips to digital folders, dwellings to skyscrapers, bicycles to airplanes;
the world we live in is constantly being reshaped by design. But, what is it
meant by design? First of all, depending on whether “design” is used as a noun
or as a verb it gets different meanings. When used as a noun, different people
understand it in different ways, like for example wallpapers, buildings, clothes,
coffee machines or cars. But when it is used as a verb, most people would agree
that it is a process of human creation. In fact, Bruce Archer [3] stated that
“design is a human activity concerned with the ability to mold the environment
to suit material and spiritual needs”. So, to design is a process. However, the
characteristics of this process depend on what the purpose of design is. When
designing a building, architectural design processes are used; while designing an
airplane requires engineering design processes. Furthermore, designers do not only
deal with the design of “new artifacts”, but also with understating the rationales of
their design processes. By doing so, improved design processes have emerged that
are capable of designing better artifacts, more efficiently and using less resources.

3

Chapter 1. Vision and Research Description

1.1.1 The Engineering Design Process

Since the early ’60s, the design community has made important improvements
in the understanding and systematization of the engineering design process [52].
These have resulted in different theories and methodologies, which have enabled
the design of artifacts as complex as spaceships and airplanes. The most ac-
cepted design methods nowadays are: (1) The Theory of Technical Systems by
V. Hubka and E. Eder [25], (2) A Systematic Approach to Engineering Design
by G. Pahl and W. Beitz [52], (3) Axiomatic Design Theory by N. Suh [72], (4)
Product Design and Development by K. Ulrich and S. Eppinger [83], (5) The
Mechanical Design Process by D. Ullman [81], (6) The General Design Theory by
T. Tomiyama and H. Yoshikawa [79, 86] and (7) C-K Theory of Design by A.
Hatchuel and B. Weil [24]. Figure 1.1(a) shows the design process according to
Pahl and Beitz [52]. This process is divided into four main phases. In order to
explain these phases, lets consider the design of a bicycle:

1. Planning and clarifying the task: A market study determines the preferences
on the types of bicycles, colors, prices, costumers characteristics, etc. These
preferences are transformed into a set product requirements: mountain bike,
red, not larger than 2 meters, etc.

2. Conceptual design: The requirements are used to design a conceptual de-
scription that includes the components and principles of the bicycle. For
example, the shape of its frame, the choice of having an electric engine, the
number and shape of the seats.

3. Embodiment design: The conceptual design is further detailed by choosing
materials, the size of the wheels, the length and diameter of the bars, etc.

4. Detail design: The results are documented and manufacturing processes are
planed. For the bicycle this means to determine the number and type of
manufacturing machines, assembling order, etc.

The first phase of this process regards the problem statement, while the fourth
phase aims at planning the manufacturing. So, both are organizational processes.
The phases where the artifact is designed occurs in the second and the third
phase, namely, the conceptual and embodiment design phases. Both phases are
accomplished by following the processes depicted in Figure 1.1(b). This model,
presented by Schotborgh et al. [59], shows that a synthesis process transforms
the set of input requirements into a candidate solution. This solution is then
analyzed to obtain measures of its performance. Resulting performances are
evaluated, to decide whether to modify (path 1), reject (path 2) or accept (path
3) the candidate solution. In case the quality of a candidate solution can be
improved by small modifications, an adjustment process is followed. This thesis
focuses on the synthesis process.

4

1.1 Context: Computers in Engineering Design

Plan and clarify the task

Develop the principle solution

Develop the construction

structure

Define the construction

structure

Prepare production and

operating documents

Task

Market, company, economy

Requirements list

(Design specification)

Concept

(Principle solution)

Preliminary layout

Definitive layout

Product documentation

Solution

U
p

g
ra

d
e

 a
n

d
 i
m

p
ro

v
e

P
la

n
n

in
g

 a
n

d

c
la

ri
fy

in
g

 t
h

e
 t
a

s
k

C
o

n
c
e

p
tu

a
l

d
e

s
ig

n
E

m
b

o
d

im
e

n
t
d

e
s
ig

n
D

e
ta

il
d

e
s
ig

n

(a) The engineering design process according to
Pahl and Beitz [52].

Synthesis

Analysis

Evaluation

Candidate solution

performance

Adjustment

1
2

3

solutionsrequirements

(b) Steps of the conceptual and embodiment de-
sign processes [59].

Figure 1.1: Models of the design process
5

Chapter 1. Vision and Research Description

1.1.2 The Role of Computers in Design

Ever since the emergence of computers, design researchers and practitioners have
developed computer based systems to support engineering design tasks. With
modern advances in technology, computers have become faster, more accessible
and capable of handling increasing amounts of data, information and knowledge.
This has transformed the design process, leading to the progressive substitution
of paper based techniques by Digital Product Development (DPD) approaches.
Nowadays, DPD is mainly supported by the following types of systems:

• Computer Aided Design (CAD): Is used to represent geometries and ma-
terial properties of artifacts. Support the representation of conceptual and
embodiment solutions that resulted from a synthesis process.

• Computer Aided Engineering (CAE): Supports the analysis of design so-
lutions by simulating the artifact under working circumstances. Typical
methods are based on Finite Element Analysis (FEA), Computational Fluid
Dynamics (CFD) and Mechanical Event Simulations (MES). In some cases,
optimization tasks are also supported, which enables the adjustment process
in Figure 1.1(b).

• Computer Aided Manufacturing (CAM): Assists the fourth phase of the
design process, by supporting the development of manufacturing plans and
process.

• Product Data Management (PDM): Supports the exchange and organization
of information during the whole design process. Aids the communication
between different design departments and keeps databases consistent.

These systems aid engineers in the design of complex products. However,
advances in technology and competitive markets are driving modern products to-
wards further miniaturization, better quality, more functionality and yet lower
prices [45]; imposing a great challenge on product development. This has moti-
vated the need for computer systems that support the synthesis process as well [4].
As a response, academia has researched and developed methods and tools to sup-
port the synthesis activity. In this context, the research presented in this thesis
deals with the development of methods to automate the synthesis process of ar-
tifactual design.

1.2 Focus: Computer Aided Synthesis

In this thesis, Computer Aided Synthesis (CAS) is defined as software that au-
tomates, partially or entirely, the activity of design synthesis. The input of such
systems are under-constrained design problems and its output a set of design

6

1.2 Focus: Computer Aided Synthesis

candidate solutions. The development of CAS systems is the result of the inte-
gration of different scientific disciplines, and its formal field of study and research
is Computational Design Synthesis (CDS), presented in Chapter 2. This section
describes the expected functionality of future CAS systems. This is done by pre-
senting in subsection 1.2.1 a fictional story about the design of wind turbines with
CAS. Subsection 1.2.2 describes some properties that CAS systems should have
in order to reproduce this functionality. Subsection 1.2.3 positions this thesis in
relation to the challenges posed by these properties on the development of CAS.

1.2.1 Story Board: Designing Wind Turbines with CAS

Wind Turbine Design

Wind turbines, as for example the one shown in Figure 1.2, are rotating machines
that transform kinetic energy of the wind into electricity. The main components
of a wind turbine are a tower, a rotor, a gear box, an electric generator, a con-
troller, a brake and an anemometer. According to geographic characteristics and
governmental regulations, wind turbines are designed using different materials,
configurations and shapes. For example, a wind turbine to be placed off-shore
(e.g. wind farms in the North Sea) requires a special coating material to prevent
it from corrosion. On the other hand, its allowable noise levels are probably much
higher than those of wind turbines placed in urban areas.

Wind turbine

components:

A: Rotor

B: Gearbox

C: Generator

D: Control system

E: Anemometer

F: Tower

G: Brakes

B
A

C

D

E

F

G

Figure 1.2: Photo and topologic diagram of a wind turbine

Design Session with CAS

A team of designers of an important energy company has a new project: design
a wind turbine for skyscrapers. The two major specifications are to produce low
noise levels and to minimize weight. Physical constraints regarding the turbine
placement and assembly represent two of the main challenges of this project. The
team has been using a special CAS system over the past years, which will enable
the usage of libraries containing previously designed components and turbines.

7

Chapter 1. Vision and Research Description

The libraries also contain a knowledge base of wind turbine functions, behaviors
and design rules.

The designers proceed by specifying the problem characteristics in their CAS
system, as for example spatial, behavioral and manufacturing requirements. By
accessing the CAS libraries, the designers are capable of selecting previously used
functionalities and components they want to include in the new design. Once this
is done, the system starts generating candidate solutions.

The CAS system generates solutions by applying different mechanisms. First,
a design management routine recognizes the building blocks required for gener-
ating solutions, and decomposes the overall problem into problem chunks. The
manager engine also decides in which order each problem should be solved and
determines which expert algorithm should solve which problem. After this, ex-
pert algorithms continue by generating candidate solutions to their subproblems,
which are later integrated to form the problem’s overall candidate solutions.

Once a number of candidate solutions has been generated, the design team
gathers around a screen and explores the automatically generated wind turbine
designs. CAS has a special solution exploration tool to do this. The designers
explore the performances of all generated solutions using a graphical solution
explorer view. This tool is used to compare the different performances of different
candidate solutions easily and relatively fast. The designers decide to select a
number of solutions with low costs and low manufacturing efforts. A CAD module
is then used to generate the 3D models and to allow the visualization of the
turbines’ geometry and configuration.

Although the solutions meet the initial requirements, the team of designers
wants to explore the possibility of generating solutions based on different princi-
ples. For this purpose, the CAS system has an Internet based synthesis engine
that searches a universal library of functions, behaviors and components. This
library has been fed by thousands of designers around the world, and contains
product independent design knowledge. As the designers are interested in in-
novative principles, they use as input an incomplete functional network. After
waiting a couple of seconds, a number of solutions appear on screen. The found
solutions are analyzed by both the computer and the designers. A large por-
tion of the Internet found design principles are dismissed, leaving a few feasible
solutions. These candidate solutions are further detailed by the CAS system in
another design session. The solutions are compared to the ones generated in the
previous session. Although the innovative solutions result in lower noise levels,
its elevated cost and complexity persuade the design team to select one of the
initially generated wind turbine concepts.

1.2.2 CAS Properties

This subsection describes some of the properties of CAS systems that would enable
the functionality described in the previous story. This list is inspired in: (a) the
research project Smart Synthesis Tools carried out by the University of Twente

8

1.2 Focus: Computer Aided Synthesis

and the University of Delft presented in [60], of which this research is part of;
(b) the reflections “Intelligent computer-aided design systems: Past 20 years and
future 20 years” presented by T. Tomiyama in [78] and (c) the paper presented
by D. Ullman entitled “Toward the ideal mechanical engineering design support
system” [82]. Although this list is not exhaustive, it provided the guidelines
driving the research presented in this thesis.

Drawing your own problems

CAS systems should be capable of solving design problem structures rather than
specific design problems cases. Instead of developing one system for individual
design problems, there should be one system for design problem families. Further-
more, problems modeled in CAS should be stored in libraries for their reusability.

Domain knowledge independence

Generation strategies and algorithms have to be uncoupled from specific problem
domain knowledge. However, there should be the possibility of using domain
knowledge to steer the solution generation process. An example of the latter is
presented by W. Schotborgh in [58].

Distribution of Requirements

CAS should generate solutions independent of the distributions of requirements
in the problem, which implies:

• Configuration of the requirements: The system should be capable of han-
dling different requirement configurations for a given specific problem. For
example, when designing a compression spring, requirements can be set on
a given wire diameter or on the spring constant or on both. In any case,
the software should be capable of generating solutions.

• Requirements at different levels of detail: Setting requirements should be
possible at different levels of detail. To illustrate this, lets consider the de-
sign of a computer. On the one hand, the user of a CAS system should be
capable of defining the functionality network of the system, thus, the upper
abstraction level. On the other hand, he/she should also be capable of defin-
ing the capacity of a Hard Disk Drive (HDD), thus, the lower abstraction
levels.

Internet integration

Internet serves as a large pool of knowledge. By integrating CAS with Internet,
these knowledge can be made available for the generation of design solutions. The
first steps towards this goal have been achieved by the NIST Design Repository

9

Chapter 1. Vision and Research Description

Project [75]. NIST is a framework where component information in the form of
functions, behaviors and flows can be stored.

Integration with existing systems

The successful implementation of future CAS systems requires a sound integration
with existing CAD, CAE, CAM and PDM systems. As this integration will
probably change the “classical” way in which designers approach their design
processes, new types of User Interfaces (UI) have to be researched and developed.
Two examples can be found in [61] and [69].

1.2.3 CAS Development Challenges

These properties pose a number of challenges on the development of CAS. The
research presented in this thesis focuses on the following:

• Domain knowledge independence: Formalizing a generic framework for mod-
eling design problems.

• Drawing your own problems: Developing standard building blocks for rep-
resenting both specific components and specific behaviors.

• Distribution of Requirements: Determining the dependency between a syn-
thesis process and the distribution of requirements.

1.3 Scope: Artifactual Routine Design

The scope of this thesis lies within the field of engineering artifactual routine
design. This section explain what is meant by this at the hand of the FBS model.

1.3.1 FBS model

FBS models a design artifact by distinguishing the following levels of object rep-
resentation: Function, Behavior/State and Structure, as shown in Figure 1.3.
The basis of the FBS model is that the transition from function to structure is
performed via the synthesis of physical behaviors. Therefore, behavior allows
characterizing the implementation of a function. As many different views of the
FBS model have been developed and researched, this thesis adopts the unified
FBPSS model presented by Zhang [87]. This model is based on the analysis and
generalization of the Japanese [84, 85], European [52], American [11] and Aus-
tralian [19] schools of design modeling. The FBPSS model uses the following
definitions:

• Structure: Is a set of entities and relations among entities connected in
a meaningful way. Entities are perceived in the form of their attributes

10

1.3 Scope: Artifactual Routine Design

when the system is in operation. For example, in Figure 1.3 the Structure
is represented by an electric motor and a crank mechanism. Here, the two
possible entities (structures) are the lengths of the bars L1 and L2.

• States: Are quantities (numerical or categorical) of the Behavioral domain
(e.g. heat transfer, fluid dynamics, psychology). States change with respect
to time, implying the dynamics of the system. For example, in Figure 1.3,
the states of the structure are represented by the distance L0 between the
electric motor and the piston, the torque T of the electric motor, or the
displacement of the piston s.

• Principle: Is the fundamental law that allows the development of a quan-
titative relation of the States variables. It governs Behavior as the relation-
ships among a set of State variables. For the example in Figure 1.3, two
possible principles are electromagnetism ruling the operation of the electric
motor, and solid mechanics ruling the function of the crank mechanism.

• Behavior: Represents the response of the structure when it receives stim-
uli. Since the Structure is represented by States and Structure variables,
Behaviors are quantified by the values of these variables. In the case pre-
sented in Figure 1.3, the two Behaviors are Generate torque and Convert
torque into force.

• Function: It is about the context sensitive usefulness of a system for its
existence. For example, in Figure 1.3, one possible function of this system
is to compress gas.

1.3.2 Classification of Design Problem

If one considers a design artifact as an object with a complete FBS description,
a design problem can be defined as one with an incomplete set of descriptions.
Different classifications of design problems can be formulated from the FBS model.
In this thesis, the classification is chosen according to the types of incomplete
representations and according to the types of behavior. As shown in Figure 1.4,
according to the types of incomplete representations design is classified in:

• Routine design: One in which the space of functions, behaviors and struc-
tures is known, and the problem consists of instantiating structure variables.

• Innovative design: One in which the functions and behaviors are known,
and the design consist of generating new structures that satisfy them.

• Creative design: One in which the functions are known, and the prob-
lem consists in determining the structures and behaviors required to satisfy
them.

11

Chapter 1. Vision and Research Description

Generate

torque

Convert torque

into force

Compress gas
Function

Behavior

Electric

motor
Piston

L2 (Sv)L1 (Sv)
Θ (Stv)

L0 (Stv)

S (Stv)

Structure

Structure variables (Sv)State variables (Stv)

Solid MechanicsElectromagnetism Principles

......

Figure 1.3: FBS example of a crank compression mechanism.

Known

Function

Known

Behavior

Known

Structure

New values of

Structure variables

Known

Function

New

Behaviors

New

Structure

New values of

Structure variables

Known

Function

Known

Behavior

New

Structure

New values of

Structure variables

Routine Design

Innovative Design

Creative Design

Figure 1.4: Design problem classification.

12

1.4 Vision: Bottom-up Approach to CAS

Nature encompasses a vast variety of behaviors (physical, chemical, human,
etc). Considering physical and human behaviors, design can be classified in:

• Engineering design: Behaviors are characterized by principles stated in
the laws of physics. Depending on the discipline of study, engineering design
can be further classified into mechanical, electrical, chemical, geological, etc.

• Human centered design: behaviors are characterized by physiologic, psy-
chological and emotional human reactions. Two examples are architectural
design and industrial design.

Under these definitions, the scope of this thesis lies within the boundaries of
engineering routine design problems. Furthermore, emphasis is set on problems
composed of parametric and topologic models, as it will be described in Chapter
3.

1.4 Vision: Bottom-up Approach to CAS

Figure 1.5 shows how routine, innovative and creative design are performed within
different dimensions of design representations. The figure also shows that inno-
vative design encompasses routine design, and creative design encompasses both
innovative and routine design. From this perspective, understanding the ratio-
nales of creative design requires the previous understanding of innovative design,
and likewise the understanding of innovative design requires the previous under-
standing of routine design. For the development of CAS, this means that before
assisting creative and innovate design activities, first a sound comprehension of
the automation of routine design needs to be developed. Moreover, C. Wynne
states in [12] that “routineness is an individuals standard, measured in the brain
of the beholder”. In other words, what one designer perceives as creative, an-
other more experienced designer regards as routine. Therefore, the routineness
of a design problem depends on the available knowledge designers have on func-
tions, behaviors and structures. In this sense, it is expected that having libraries
of routine design problems will enable, after further research, the automation of
more innovative and creative problems.

Although CDS in routine design has been broadly researched in academia [12],
most methods have been developed for specific applications [4]. Moreover, Cagan
et al. [4] stated that the initialization of CDS has not received enough attention
in literature, and that this might be the reason why it has not been widely im-
plemented in industry. While it is true that advances in CDS have enabled the
development of design automation methods for specific routine design problems,
few methods describe how to do so from a general perspective [4]. Therefore, this
work investigates the development of generic methods to automate the synthesis
process of routine design problems.

13

Chapter 1. Vision and Research Description

Functions Behaviors Structures

Creative

Innovative

Routine

Figure 1.5: Bottom-up approach to computational synthesis research.

1.5 Challenge: Complexity in Routine Design

Although routine design occurs within a well defined domain of knowledge, sev-
eral industrial cases clearly demonstrate the complexity that such problems can
exhibit. Consider for example the design of injection molds. The first injection
molds were designed and developed in 1868 by John Wesley Hyatt, who injected
hot cellulose into a mold for producing billiard balls [15]. Much later, in 1946,
James Hendry built the first screw injection molding machine, giving birth to
the machines and processes we know nowadays. Since then, much knowledge on
injection mold design has emerged and been formalized in books (e.g. [15, 44]),
expert systems (e.g. [46, 10]) and Internet. However, given the amount of compo-
nents, physical phenomena and processes involved, the design of injection molds
is still considered a complex task. As one may imagine, automating the synthesis
process of mold design, though being routine, is not straightforward. Given that
around 80% of design at industry is routine [43], a proper understanding of its
complexity is a relevant topic in the field of design theory and methodology.

1.5.1 Modeling Design Artifacts

Artifacts, e.g. an injection mold, can be modeled as a hierarchical multi-layered
network of interrelated components and parameters that resemble the structure
of the pyramid of Gerrit Muller [48], as shown in Figure 1.6. In this model, the
top layers represent functional requirements, the in-between levels represent com-
ponents, and the lower levels represent design parameters of these components.
Functional requirements specify the characteristics of an artifact’s function, as for
example the power of an electric engine. Furthermore, in this model components
are composed of networks of other sub-components, and so forth. For example,
sliders in injection molds are composed of mechanical linkages, which are simulta-
neously composed of rigid links and joints. It is characteristic to complex artifacts
to have a large number of interconnected networks of components, as well as a
large number of parameters, relations and constraints.

14

1.5 Challenge: Complexity in Routine Design

Core

Cavity 2

Melt

Slider

Linkage mechanisms

Gate

Ejector pin 1

Cycle Time

Part deformation

Costs

Link Joint

Ejector pin 2
Cavity 1

Cooling system

Channel 1

Channel nChannel 2

Diameter Length

Material Width

Length

Material

LengthP P

P P
P

P

P

P
P

P P

P

P

P

P

P

P

P

P
P P

P PP

P

P
P

P P

P

P

P

P

P

P

P

P P P P
P

P

PP

P

P

P

P

P

P

P

P

P

P

P

PP P

P
P

P

P P

P

P

PP P

P

P

P
P

P
P

P

Functional

requirements

Design

parameters

Design

Components

10
7

10
3

10
2

10
1

10
0

Number of Items

Link
Link

Joint

Joint

The pyramid of Gerrit Muller Model of a mold

Figure 1.6: The pyramid of Gerrit Muller [48] to model artifacts

1.5.2 Modeling Design Problems

An artifactual design problem can be modeled as an incomplete description of an
artifact, as it is shown in Figure 1.7. The descriptions known on forehand are
regarded as the design requirements, and these must be satisfied by candidate
solutions. Design requirements can be functional requirements, components, pa-
rameter values or combinations thereof. Creative, innovative and routine design
problems can be represented using this model, as the differences among them
reside in the amount and type of knowledge available for generating candidate
solutions.

In routine design there is knowledge available about:

• the types of components that can be used to generate candidate solutions,

• how components are allowed to be connected among each others,

• parametric descriptions of each component, and

• relations and constraints that relate parameters and components to func-
tional requirements.

Furthermore, designing one type of artifact can be the subject of different types
of problems, as several combinations of design requirements can be formulated.

1.5.3 Synthesis in Routine Design

As Figure 1.8 indicates, moving from an incomplete representation to a complete
description is done by a synthesis process. Synthesis processes in routine de-
sign are performed by two types of tasks: (1) generating networks of components
and (2) attributing values to unknown parameters. The exact strategy determin-
ing how these tasks are performed depends on the distribution of requirements

15

Chapter 1. Vision and Research Description

Slider

Linkage mechanisms

Cycle Time

Part

deformation

Costs

Link Joint

Diameter

value

Length

value

Link
Link

P

P

P P

P
P

P

P

P
P P

P
P

P

Core

Cycle Time

Part

deformation

Costs

Cavity 1

Cooling system

Channel 1

Channel nChannel 2

Diameter Length

Material

Abstract representation of the

design problem of an artifact
Example 2 of abstract representation

of the problem of mold design

Example 1 of abstract representation of

the problem of mold design

Figure 1.7: Modeling design problems as incomplete representations of artifacts

throughout the different levels of detail of the problem, e.g. only on top, only
at the bottom or as a mix. However, this relation is not known a priori and is
different for different distributions of design requirements.

1.5.4 Complexity in Routine Design Problems

Complexity in routine design problems is attributed to the distribution of design
requirements along the different abstractions of the problem. Determining the
dependency between design complexity and a synthesis strategy is the challenge
this research deals with.

P P

P PP

P

P

P
P

P P

P

P

P

P

P

P

P

P
P P

P PP

P

P
P

P P

P

P

P

P

P

P

P

P P P PP

P

PP

P

P

P

P

P

P

P

P

P

P

P

PP P
P

P

P

P P

P

P

PP P
P

P

P
P

P
P

P
P P

P P
P

P

P

P
P

P P

P

P

P

P

P

P

P

P
P P

P PP

P

P
P

P P

P

P

P

P

P

P

P

P P P PP

P

PP

P

P

P

P

P

P

P

P

P

P

P

PP P
P

P

P

P P

P

P

PP P
P

P

P
P

P
P

P

P P P
P

Design problem:

incomplete description of an artifact

Design solutions:

complete description of an artifact

Generate

networks of

components

Attribute values

to parameters

Synthesis

process

Figure 1.8: Synthesis: from incomplete to complete descriptions

16

1.6 Research: Managing Complexity In Routine Design

1.6 Research: Managing Complexity In Routine
Design

The work presented in this thesis proposes the management of complexity as
means of determining synthesis strategies to solve routine design problems. The
research approach consisted in: identifying different types of complexity in routine
design, developing methods to manage each type of complexity, and integrating
the methods into one methodology that determines the synthesis strategy for
solving a routine design problem. By implementing the resulting methodology
into computer programs, routine design problems are automated.

1.6.1 Hypothesis

The research presented in this thesis is founded on three hypothesis:

A routine design problem can be characterized
by a finite number of complexity types.

A method can be found to manage each complexity type.

A generic method to determine the synthesis strategy of routine design problems
can be found by determining the types of complexity in the problem and applying

methods for their management.

This under the assumption that:

• complexity in routine design is related to the distribution of design require-
ments throughout the different levels of detail of the problem, and

• synthesis strategies depend on the complexity of the problem.

The results of investigating the first hypothesis are presented in Part I. The
result is a model of complexity in routine design. Part II presents methods that
were developed during this research for managing the previously identified types
of complexities. Part III integrates these complexity management methods into
one methodology for determining synthesis strategies for routine design problems.

1.6.2 Case Study

The research presented in this thesis is part of the project Smart Synthesis Tools
being developed at the University of Twente in cooperation with Delft University
of Technology, both in The Netherlands. The project researches the development
process of CAS systems. The aim is to deliver generic development methodologies
for dedicated synthesis tools supporting engineering design processes [60]. The
case study assigned to this research project is the design of Cooling Systems for
Injection Molding (CSIM). The Advanced Technology Center (ATC) department
of PHILIPS has provided the knowledge about this design problem. Chapter 2
presents a brief description of the characteristics CSIM design.

17

Chapter 1. Vision and Research Description

1.6.3 Complexity Management Approach

The approach proposed in this thesis for managing design complexity, as means
of determining synthesis strategies for routine design problems, consists of the
following steps:

1. Determine a formal model of the components, parameters and relations of
the design problem to automate. This is done by applying the FBS based
design formulation method described in Chapter 5.

2. Decompose the design problem into different levels of detail by analyzing
its functional and physical structure. The ADT based design decomposition
method described in Chapter 5 is proposed for this end.

3. Translate the obtained problem model into a TARD representation. TARD
representations are maps that describe which components, relations and
parameters can be used for designing an artifact. Chapter 6 describes the
rationals of TARD.

4. Determine the Topology System of Equations (ToSE) of the model, following
the method in Chapter 7. ToSE are algebraic relations that determine how
the instantiation of one component is constrained by the instantiation of
other components. These equations relate components within one level of
detail (balance equations), and between different levels of detail (vertical
equations).

5. Apply a constraint solving algorithm (Chapter 8) and a grammar gen-
eration method (Chapter 7) to determine the design’s problem synthesis
strategy. The constraint solving algorithm determines which components
to instantiate by solving the ToSE equations. The grammar method fur-
ther specifies how to generate a network of components. Furthermore, the
constraint solving algorithm also determines the order in which the design
parameters are solved.

The last two steps of this approach have been implemented into software appli-
cations. One tool is an specific software implementation for the design problem of
cooling systems for injection molding. This tool is capable of determining synthe-
sis strategies, which in combination with other algorithms, allows the automatic
generation of cooling systems. The second implementation is rather generic. Here,
a designer enters as input a TARD model of a routine design problem and the
system, in combination with a random generation algorithm, generates candidate
solutions. The effectiveness of this implementation can be improved by using
better algorithms.

18

Chapter 2
Research Positioning

The following review is a collection of accepted literature associated with the
proposed research into complexity management for routine design automa-
tion. Its purpose is to establish a background for the reader regarding the
areas of computational synthesis and complexity in design. It also shows
how previous research is incorporated in this thesis. A short description of
CSIM design is also presented.

2.1 Field: Computational Design Synthesis

Research in Computational Design Synthesis (CDS) studies algorithmic proce-
dures to automate the generation of designs [2]. The idea is that by com-
bining “low-level” building blocks, “high level” functionalities can be achieved.
CDS methods vary from straight forward implementation of artificial-intelligence
(e.g. [56]), constraint solving (e.g. [33, 16]) and optimization techniques (e.g. [89])
down to much more specialized approaches, as for example engineering shape
grammars ([41]) and function-based synthesis methods ([70]). CDS is a multi-
disciplinary science integrating knowledge from diverse disciplines, among which:

• Design theory, cognitive science and artificial intelligence: have developed
prescriptive and descriptive methods to model design processes; have re-
sulted in better understandings of the types of design problems, reasoning
approaches, problem structures, design rationales and representations.

• Optimization, constraint solving and operations research: have provided
strategies, algorithms and methods for the automatic generation and eval-
uation of design solutions.

• Knowledge engineering: has allowed the usage of knowledge to structure
design problems and aid the process of synthesis. Other contributions are

19

Chapter 2. Research Positioning

knowledge elicitation techniques, knowledge representation methods and
frameworks, as well as knowledge based expert systems.

• Computer science: has provided software languages, information models,
algorithmic procedures and practical techniques for the implementation of
computer systems.

The following subsections describe how these disciplines have been integrated
into methods for CDS.

2.1.1 General Method

A CDS method describes models and algorithms required for automating a given
synthesis process. Figure 2.1 shows a flowchart with the general processes a CDS
method should incorporate [8]. Firstly, the design problem is formulated. For
technical problems this is done by declaring variables, relations, constraints and
objective functions. This information is translated into representations, or build-
ing blocks, that can be used by algorithms to generate candidate solutions. A
candidate solution satisfies all constraints of the problem independent of how well
the goal is achieved. An evaluation step analyses the solutions by calculating
its performance and decides whether it is accepted, adjusted or rejected. Guid-
ance drives the generation process in a given direction to improve the generated
solutions.

CDS methods range from low level building blocks manipulation up to high
level conceptual reasoning. This thesis deals with the first type of methods. In
relation to this flowchart, this thesis focuses on the formulation (Chapter 3),
representation (Chapter 4, 5 and 6) and generation (Chapter 7 and 8) phases.
The following subsections present a review of CDS methods relevant to the topics
treated in this research. A complete overview on design automation methods and
techniques can be found in Chakrabarti [9] and in Antonsson and Cagan [2].

Representations

Evaluation

Guidance

Solutions

Generation

User defined

problem

formulation

Synthesis

process

Figure 2.1: Computational design synthesis diagram [8].

20

2.1 Field: Computational Design Synthesis

2.1.2 Grammars

Using grammars for CDS consists in translating knowledge about a design prob-
lem (e.g. from experienced designers) into a set of transformation rules describing
how an initial incomplete design can be transformed into a complete one. Here,
algorithms generate solutions by applying the rules to an initial design. Gram-
mars are used both as representations (e.g. [54, 51]) and as generation systems
(e.g. [35, 64, 68, 71]. As generative systems, grammars have been typically used
in architecture (e.g. [17]) and in mechanical design (e.g. [68]).

A grammar is defined by a 4-tuple G = (V,X,R, S) , where V is the set of
objects that are manipulated by the grammar, X is a set of terminal and non-
terminal symbols, S is the initial symbol and R is a set of rules of the form
outlined above. The language of the grammar G is the set of all results produced
from the start symbol that consists of only terminal symbols.

Figure 2.2 shows a set of exemplary transformation rules referring to shape
grammars for a planar truss design [63]. Accordingly, the first rule of the illustra-
tion states that a given triangular truss can be divided into two triangles, whereas
the second rule states the inverse transformation. Rule 3 applies on a slightly dif-
ferent structure as rule 1 (a triangle with a fixed point) and consequently proposes
an appropriate transformation, while rule 4 also allows this transformation in a
reverse fashion. A structure composed of multiple triangular truss features can
successively be transformed by applying these rules.

There are three possible tasks for programs that implement grammars [20].
The most common task, and perhaps the first that comes to mind, is to aid in
the generation of designs at the hand of a known grammar. Here, grammar rules
are combined using special algorithms to generate a new design. A second type
of program is a parsing program. A parsing program is given a grammar and
a design, and the program determines if the design is in the language generated
by the grammar and, if so, gives the sequence of rules that produces the shape.
A third type of program is an inference program. The grammatical inference
problem is: given a set of designs, construct a grammar that generates the design
solutions.

This thesis researches the applicability of grammar approaches as function of
the type of requirements and available resources in a design problem. A generative
approach based on grammars in presented in Chapter 7.

Rule 2Rule 1 Rule 3 Rule 4

2
f ff f f f

f

3

1

f

3

2
1 4

f

3

1
42

f

3

2 1

Figure 2.2: Grammar of truss design.

21

Chapter 2. Research Positioning

2.1.3 Agent Based Design

Agent based design is inspired in how multiple members of a design team con-
tribute to generate design solutions. Here, individual designers (agents) work in-
dividually in their specific problems coordinated by a manager that keeps control
of the overall design process. In agent based design, components are synthesized
based on the physical interactions between them [76].

Agents are meta-heuristics which have been used to solve a wide variety of
optimization and constraint satisfaction problems [47]. It is based in encapsulating
software modules into agents which can then be organized into teams. The agents
collaborate with each other by communicating results via shared memories. A-
Teams can handle multiple objectives and constraints naturally, and do not require
a set of weighting functions a-priori, allowing the user to select from a set of pareto
equivalent solutions at the end of the solution process.

A-design, proposed by M. Campbell et al. in [7], is a CDS method in which
agents modify design candidates and are themselves modified in order to create
better results. The basic subsystems of the A-Design theory are (1) an agent
architecture that is responsible for creating and improving design alternatives,
(2) a representation of the conceptual design problem that is comprehended by
the agents in order to create design concepts, (3) a scheme for multi-objective
decision making that retains solutions exhibiting different patterns of strengths
and weaknesses in order to accommodate change in user preferences, and (4) an
evaluation-based iterative algorithm for improving basic design concepts towards
successful solutions.

M. Campbell et al. present in [6] the application of this theory to the configu-
ration problem of electro-mechanical devices. As shown in Figure 2.3, it uses four
types of computational agents. C-agents construct conceptual candidate solu-
tions using a library of component types. I-agents generate conceptual solutions
with values obtained from a catalog of components. Each I-agent has a different
preference, e.g. low costs of high performance. M-agents receive good designs
and produce feedback to control the other agents in the system. F-agents also
receive good designs, but their function is to modify solutions with expectation
of improving them.

The solutions generated by I-agents are classified into three groups: poor
designs, good designs and pareto designs. Poor designs are discarded by an eval-
uation algorithm. Good designs are modified by M- and F-agents. Pareto designs
are added to a “hit list” and simultaneously used by modification agents in the
search of better designs. Each iteration step yields a new “best” design. After
the iterations ends, the “best of the best” is presented to the user as the solution.

From the perspective of A-Design, this thesis sets the focus on the development
of a manager agent. The goal is to have one generic manager agent which can
determine synthesis strategies for routine design in general.

22

2.1 Field: Computational Design Synthesis

F-Agents

C-Agents

I-Agents
Manager-

Agent

Calculate

objectives

Sort

Feedback

Fragmented

designs

Design

configuration

Completed

designPareto and

good designs

Poor designs

discarded
Final designs

Generate

Evaluate

Guide

Problem description

and representation

User

Figure 2.3: CDS and agents in A-Design [7].

2.1.4 Evolutionary Approaches

Evolutionary approaches are based on the principles of biological evolution, and
encompass a broad range of search techniques, among which the most prevalent
are genetic algorithms (e.g. [32]), evolutionary programming (e.g. [18]) and evo-
lution strategies (e.g. [88]).

The search algorithms of evolutionary approaches are based on genetic adap-
tive operators, namely, mutation and recombination. The selection is based on
Darwinian selection, or selection of the fittest. A characteristic of these methods
is that they employ sets of solutions (populations) represented by vectors. Any
particular solution is written as a string of objects called chromosomes, and each
component is regarded as a gene. All three methods consist of maintaining a
population of competing candidate solutions. The first population of solutions
is randomly generated. Then, new populations are created by bringing random
alteration to the solutions in the previous population. The performance of a solu-
tion determines how fit it is. A selection mechanism determines which solutions
to combine for generating new solutions, and which ones to exclude.

The main differences between these techniques are their representation and
selection methods, which are:

• Genetic algorithms: The representation is done in the form of string of
numbers, which are often binary. The selection is done by calculating a
fitness based on an analysis.

• Genetic programming: uses lisp-like trees as representation of the solutions,
resulting in computer program like solutions. The fitness is determined by
the ability of the generated program to solve a computational problem.

23

Chapter 2. Research Positioning

• Evolutionary programming: the structure of the program is fixed, being the
parameters the ones allowed to change. Evolutionary programming uses
vectors of real numbers for the representation of solutions. The selection
has the characteristic that the results of mutations are considered in future
generations only if their fitness is higher than in other found solutions.

Evolutionary approaches incorporate the processes of Synthesis, Analysis,
Evaluation and Adjustment required in CDS as it is shown in Figure 2.4. This
characteristic makes the implementations of such approaches relatively straight-
forward for CDS.

2 3

1

requirements

Synthesis

(Population Initialization)

Analysis

(Fitness Calculation)

Evaluation

(Selection Operation)

Adjustment

(Mutation Operation,

Crossover Operation)

Embodiment

(Initial Population)

Solution

Performances

(Fitness of each solution)

Embodiment

(New population)

Figure 2.4: Genetic algorithm and the computational synthesis method.

2.1.5 PaRC

PaRC (acronym for Parameters, Resolved rules and Constrain rules) is a knowl-
edge engineering methodology for design automation [57]. PaRC prescribes the
automation of parametric routine design problem by proposing a framework for
representing knowledge and methods for automating the design problem. The
major characteristic of PaRC in relation to other CDS methodologies, is that it
covers the path from a knowledge source (e.g. an expert with a design problem)
up to the development of software tools (see Figure 2.5)

PaRC distinguishes two types of design knowledge: (1) knowledge that defines
what the design problem is, and (2) knowledge that defines how the design prob-
lem can be solved. Design problem knowledge is represented by parameters and
topological elements. Knowledge for solving the problem is represented by resolve
rules (R-rules) and constraint rules (C-rules). A generation algorithm, generic to
design problem formulated with the PaRC representation, enables the synthesis

24

2.2 The Problem: Complexity Management

Knowledge

source

Design

automation

software

de
co

m
po

si
tio

n

kn
ow

le
dg

e

ac
qu

is
iti
on

m
od

el
in
g

au
to

m
at

io
n

ge
ne

ric
 s
of

tw
ar

e

de
ve

lo
pm

en
t

us
er

 in
te

ra
ct
io
n

Figure 2.5: PaRC: Knowledge engineering method, from [57].

activity. PaRC prescribes two methods for translating a parametric routine de-
sign problem into software for automatic design generation. On the one hand,
a knowledge elicitation method targets the acquisition of problem and problem
solving knowledge. On the other hand, a method for developing the software tool
is presented. Software development is supported by a generic software framework
that facilitates the codifications of new design automation tools.

In relation to PaRC, the long term goal of this research is to automate the
development of CDS methods at the hand of the structure of the problem. The
results of PaRC have served in envisioning the development process of computa-
tional synthesis systems. Furthermore, this thesis builds up the model of infor-
mation classification presented in PaRC.

2.2 The Problem: Complexity Management

Complexity in design has been studied from two different perspectives: the physi-
cal domain and the functional domain [73]. In the physical domain -which includes
most engineers, physicists and mathematicians- complexity is seen as an inherent
characteristic of physical things, including algorithms, products, processes, and
manufacturing systems. This kind of thinking leads to the idea that systems with
many parts are inherently more complex than those with less. In the functional
domain, complexity is seen as a relative concept that evaluates how well we can
satisfy “what we want to achieve” with “what is achievable”. This view is used
in this thesis to develop a model of complexity for routine design problems.

This section aims at presenting a short overview of studies on design complex-
ity that are the most relevant to this work. From the functional perspective, the
theories of axiomatic design, incompleteness of information and multi-disciplinary
complexity are described. From the physical perspective, complexity in large
parametric spaces is described.

Complexity in design can be attributed to the different stages of the design
process. In this sense, there is complexity of synthesis, complexity of analysis,
complexity of evaluations, complexity of the design solutions, complexity of man-
aging the design process. Here, I will only present complexity of the synthesis
process.

25

Chapter 2. Research Positioning

2.2.1 Complexity in Axiomatic Design

ADT is based on the hypothesis that there are fundamental principles that govern
good designs [72]. Its two founding axioms are:

1. Maintain the independence of the Functional Requirements (FRs)

2. Minimize the information of the Design Parameters (DPs).

FRs are the set of requirements that characterize the needs of the artifact in
the functional domain, while DPs are the variables that characterize the design in
the physical domain. The relation between the FRs and the DPs is represented
in equation form as:

FR = [A]DP (2.1)

where A is the Design Matrix (DM) of the problem. Depending on the DM, a
design can be coupled, decoupled or uncoupled. Consider for example a problem
with two FRs and two DPs. When the design is coupled, the FRs cannot be
satisfied independently because of the interdependence with both DPs, as shown
in Equation 2.2. In a decoupled design, shown in Equation 2.3, the DPs have
to be solved in a particular order so that FRs are achieved. In uncoupled designs
(Equation 2.4), the FRs are independent from each others, and no particular
order is required for solving the DPS.

Coupled :
{
FR1
FR2

}
=
[
x x
x x

]{
DP1
DP2

}
(2.2)

Decoupled :
{
FR1
FR2

}
=
[
x 0
x x

]{
DP1
DP2

}
(2.3)

Uncoupled

{
FR1
FR2

}
=
[
x 0
0 x

]{
DP1
DP2

}
(2.4)

In ADT, complexity is defined as “the measure of uncertainty in achieving the
functional requirements of a system within their specified design range”. When
the range of a system changes as function of time, it is regarded as a system
with time-dependent complexity. When the range does not change as function of
time, it has a time-independent complexity. “Time” is used in a general sense,
signifying progression of “events”.

Time-independent complexity is classified into time-independent real complex-
ity and time-independent imaginary complexity. The former is a consequence of
the system range not being inside the design range. The latter occurs when there
are many FRs and the design is a decoupled design. It is called imaginary because
this corresponds to a situation in which the different orders in solving the design
matrix have different attributed levels of difficulty. A system with imaginary
complexity can satisfy the FRs at all times if we vary DPs in the right order.

26

2.2 The Problem: Complexity Management

Time-dependent complexity is the uncertainty caused by the increase or de-
crease of the number and types of DPs during the design process itself. ADT
classifies time-dependent complexity into combinatorial and periodic complexity.
Design problems with combinatorial complexity experience a continued growth of
their DPs in time. For example, constructing a sentence by the combination of
words has combinatorial complexity. As the number of words (the DPs in this
case) increases, keeping semantic and syntactic consistency among them becomes
more difficult. On the other hand, periodic complexity is the case in which the in-
crease of parameters is restarted after a period of time (or succession of actions).
An example described in [74] is air traffic control. Air traffic in large airports
follows wave pattern that depends on the time of the day. When the traffic is at
its peak, air controllers deal with very complex situations. However, at low traffic
times their task becomes significantly more simple.

ADT suggests three main strategies for managing design complexity:

• Minimize the number of FRs

• Eliminate time-independent real complexity and time-independent imagi-
nary complexity,

• Transform a system with time-dependent combinatorial complexity into a
system with time dependent periodic complexity

This thesis adopts this model of design complexity, and explores its char-
acteristics for routine design problems. The developed complexity management
methods are based on the three previously suggested strategies.

2.2.2 Completeness of Information

As presented by Ueda [80], complexity of emergent systems can be categorized
in three classes with respect to incompleteness of information about the artifacts
environment and/or the specification of the problem. Figure 2.6 shows how the
complexity of a design problem increases as function of the incompleteness of
information for different domain.

The three classes pointed out in [80] are:

• Class 1: Problems with complete descriptions. Are those where the envi-
ronment information and the problem descriptions are given wholly. In this
case it is often difficult to find the optimal solution.

• Class 2: Problems with incomplete environment descriptions. The difficulty
in these problems is characterized by uncertainties in modeling the dynamic
behavior of the system.

• Class 3: Problem with incomplete specifications. Environment and problem
specifications are both incomplete. Difficulty resides in the ambiguity of the
problem, having human interaction as the most significant aspects.

27

Chapter 2. Research Positioning

Complexity of system

Problem domain

Uncertainty of information

Increasingly

difficult

Problem Class III: Incomplete specifications

Problem Class II: Incomplete environment descriptions

Problem Class I: complete descriptions

Design

Manufacturing

Utilization

Figure 2.6: Complexity as function of knowledge completeness, from [80].

In this research the focus is set on complexity class 2. For this type of problems,
there are many candidate solutions, which lead to a combinatorial explosion of
the space of solutions. Here, Ueda has pointed out the need to develop efficient
and robust methods to find optimal solutions. Typical problem solvers here are
evolutionary algorithms, genetic programming methods, and genetic algorithm,
among others. The preference on choosing one technique or another depends
on the characteristics of the problem, e.g., purely parametric, topologies, lay
outing, etc [27]. For complex routine design, where the problems usually present
a mixed combination of characteristics, collaborative usage of different techniques
is preferred. The difficulty here lies in the proper management of techniques and
solutions though the generation process.

2.2.3 Complexity of Multi-disciplinarity

Tomiyama [77, 78] researched design complexity resulting from the involvement
of multiple disciplines. He examined the structure of knowledge represented by
relationships among theories. Consider the design of an electromechanical en-
gine, where the mechanism dynamics and electromagnetism are integrated by the
multi-disciplinary character of the artifact. In this case, two independent theo-
ries become relevant to the instantiation of a variable -e.g. length, width, depth-
common to both theories, as indicated in Figure 2.7. These type of complexity
is regarded as Complexity by Design, being commonly found in multidisciplinary
design problems (MDDP). Intrinsic complexity of multidisciplinary is also iden-
tified as a second type of complexity arising from MDDP. Here, two theories get
integrated through one common concept as an interface between them, as shown
in Figure 2.7.

28

2.2 The Problem: Complexity Management

Intrinsic complexity of multidisciplinaryComplexity by Design

Figure 2.7: Complexity from the viewpoint of knowledge structure [78].

2.2.4 Large Parametric Spaces

An important source of complexity in design is attributed to large amounts
of inter-constrained parameters. To cope with these types of complexity, de-
sign problems are usually partitioned into smaller and easier to solve sub prob-
lems, which are latter solved towards optimal solutions in a coordinated fashion.
One category of decomposition methods is Multidisciplinary Design Optimization
(MDO) [53]. Here, systems are partitioned along discipline boundaries, which are
often dictated by the design organization structure or available analysis tools.
The focus lies in dividing the optimization into the sub-optimizations within each
module and a coordinating optimization at the system level place.

MDO methods can be subdivided into single-level and multilevel. The former
centralizes all design decision in one optimizer, while the latter distribute decision
making throughout the system by providing design groups with some autonomy
and ability to utilize existing design tools. Notable multilevel MDO techniques are
Collaborative Optimization (CO) [1] and Bi-Level Integrated System Synthesis
(BLISS) [66]. Another category of decomposition methods is Analytic Target
Cascading (ATC) [1]. Here, the problem is partitioned in a hierarchical form
around the components composing it. The method consists in specifying top level
targets (performances to achieve) and cascading the targets to the lower level
components design.

In order to use these methods, it is necessary to already have a first best
guess initial design, which is refined to produce optimal designs. However, these
types of methods is applicable for redesign proposes rather than for CDS of new
solutions. Therefore, this type of complexity is not regarded in this study. As it
will be discussed in Chapter 4, this type of complexity is rather attributed to the
solution space than to the problem space.

29

Chapter 2. Research Positioning

2.3 Case Study: CSIM Design

Injection molding is an important manufacturing technique for producing plastic
parts. This technique consists of injecting a hot polymer into the impression of a
mold. Figure 2.8 shows an exploited view of a mold. A mold is composed of two
basic parts, namely, a core and a cavity. Here, the plastic is cooled down to a solid
state by a series of cooling channels drilled into the mold. The cooling stage is of
great importance in the injection molding process, as it affects the productivity
and the quality of the final part.

Mold cavity

Mold core

Product

Figure 2.8: Injection mold example.

2.3.1 Cooling Design

Cooling systems for injection molding are defined as the set of components that
enable heat transfer between a hot melt contained in a mold and a coolant sub-
stance flowing within it. Cooling systems allow reducing the time required for
solidifying the plastic melt, which is translated in manufacturing cost reduction.
In addition, cooling systems should be capable of delivering uniform tempera-
tures on the plastic part so that unwanted effects, such as differential shrinkage
and warpage, can be minimized. A cooling system for injection molding is com-
posed of a temperature-controlling unit, a pump, coolant supply manifold, hoses,
cooling channels, and collection manifold. For the present case study, the cooling

30

2.3 Case Study: CSIM Design

channels layout design has been selected from the other components, as it deter-
mines to a great extend the performance of the cooling system. Figure 2.9 shows
an example of a cooling layout. Sliders, ejector pins and other mold moving parts
constraining the mold volume make it hardly feasible to design optimal cooling
layouts.

The design process of CSIM is divided into three successive processes [39]:

1. Preliminary design: consists of determining the possible locations of cooling
channels in the vicinities of hot spots. At this phase, the channels do not
form a circuit.

2. Layout design: consists in connecting previously positioned channels into
circuits to assure a coolant is able to flow through it. Inlet and outlet
channels are included to exchange the coolant with external cooling devices.

3. Detailed design: Optimizes cooling channels position to minimize warpage
and thermal residual stress by applying small changes to the channels posi-
tions.

In this research, the preliminary and layout design phases are used as case study,
as it is in these phases where the cooling concepts are generated.

Cooling circuits in

mold core

Cooling circuits in

mold cavity

Figure 2.9: Example of a cooling System for injection molding.

31

Chapter 2. Research Positioning

2.3.2 Related Work

At present, most academic research in injection molding cooling design has focused
on developing detailed analysis and optimization strategies. The former simulate
the cooling phase of the injection molding process and has resulted in Computer
Aided Engineering (CAE) systems as MoldFlow [67] and Moldex3D [40]. The
latter uses heat transfer analysis to minimize cooling time and temperature dis-
tributions of the plastic part. However, a human designer has to create the initial
design from where CAE and optimization methods can be applied. In fact, opti-
mizing cooling channels placement and diameter results in local optimum, given
that the initial design limits the possibility of finding global optima. Therefore,
in order to achieve complete automation, the problem of generating the initial
design must be solved.

Although automating design problems has been extensively investigated over
the past 30 years [37], not much literature addresses the problem of injection
molding cooling design. The most relevant to this thesis is the research devel-
oped by Li et al. [37, 39, 38], which has resulted in a method for automating
the design of cooling circuits for injection molding. In short, the method con-
sists of decomposing the part geometry into several predefined shapes. Then,
three techniques are collaboratively used for candidate solution generation: (1)
case-based design, (2) graph-based search and (3) heuristic search. Case-based
design maps the shape features to predefined solutions, obtaining a preliminary
design that is captured in a graph model. A graph based transversal algorithm is
employed to search for candidate cooling circuits. Heuristic search develops the
candidate solutions into layout designs that contemplate tentative manufacturing
plans. Although this approach has demonstrated to be capable of automating the
generation of cooling solutions, it suffers from the drawback that the design has
a strong dependency on the accuracy of the shape recognition algorithm as well
as on the quality of the sub-solution predefined for each shape feature. Further-
more, complex algorithms are required to solve geometric constraints and keep
the physical consistency of the cooling solutions (e.g. make sure cooling channels
are connected to form a circuit).

32

Part II

Founding Frameworks

33

Chapter 3
Information and Models

This chapter explores the entities and types of information in artifactual
design required to formulate routine problems. As the focus is computational
synthesis, mathematical models and relations used in design automation
are presented. The chapter finishes by presenting a classification of design
problems as function of the types of information.

3.1 Introduction

Design artifacts are described by three different types of entities: (a) vocabulary
of elements, (b) descriptions of elements and (c) the configuration of elements.
Consider the case of the gear device shown in Figure 3.1. Here, the vocabulary of
elements is two gears and two shafts. Descriptions determine the attributes of the
artifact, like the diameter (D) and angular velocity (w). Configurations determine
the disposition of the elements in the structure, as for example the connectedness
between elements represented by the relations in the figure. Configurations can
be classified into topologic relations and physical coherence constraints. While
the former define the topology of the elements in the structure, the latter is used
to assure no physical impossibilities are committed by the artifact being designed.
For example, two gears cannot share the same place in space.

The following sections describe types of information in routine design problems
and a scheme for their formulation. This scheme is used in Chapter 4 to identify
different types of complexity.

3.2 Types of Information

As proposed by Schotborgh et al [59], the information flow of an analysis and
synthesis process can be classified in three groups: embodiment, scenario and
performance, as shown in Figure 3.2. According to this model, analysis allows the

35

Chapter 3. Information and Models

Relations

Element

Description

Scenario

Mass

Shape

Velocity

Force

Cost

Position

Force

Cost

Mass

Force

Cost

Mass
Equal velocities

Diameter = i x Diameter

Velocity = i x Velocity

Diameter
Mass

shape

Velocity

Force

Cost
Position

Diameter

Equal Velocities

Velocity

Velocity

Input Shaft

Output Shaft

Input Gear

Output Gear

Color

Mass

etc

Shape

Position

Color

Speed

Mass

etc

Shape
Position

Objective

Function

Connectedness

Force

Force

Speed

Color

Mass

Force

Speed

Position

Shape

Law of Physics

Aesthetics

Cost

Cost

Embodiment

Figure 3.1: Types of information in routine design.

36

3.2 Types of Information

quantification of the performances of an embodiment undergoing a given scenario
(Figure 3.2(a)), while synthesis consists of specifying an embodiment undergoing
a given scenario such that performances are satisfied (Figure 3.2(b)). Thus, two
opposing processes handling the same types of information.

AnalysisScenario

Embodiment

Performance

(a) Information flow in analysis process,
from [59].

SynthesisScenario

Embodiment

Performance

(b) Information flow in synthesis process in-
formation

Figure 3.2: Information flow in analysis and synthesis processes

Embodiment

Embodiment is here defined as the subset of descriptions of an artifact upon which
instances are created to generate design solutions. In Figure 3.1 this is shown for
the case of the gear device, where the embodiment is composed of two elements
(one input gear and one output gear), and its descriptions (diameter and velocity).

Scenario

An artifact’s ability to accomplish its function is affected by its interaction with
its environment. The subset of environment variables, attributed to elements
in the natural world and considered in measuring a design artifact’s ability to
accomplish its function, is here defined as scenario. Scenarios are also specified
by descriptions. For the case of the gear device in Figure 3.2, a possible scenario
is one shaft attached to the input gear and one connected to the output gear.

Performance and Goals

Given that design functions are expressed in abstract terms, it is necessary to use
measurable descriptions to express and asses its goals. Goals are commonly rep-
resented by objective functions, where performance indicators are weighted and
added to compute the overall performance of the design. Performances are calcu-
lated by analysis relations using instantiated embodiments and scenarios. Analy-
sis relations use known principles -as for example laws of physics and economics-

37

Chapter 3. Information and Models

to model the interaction of the design artifact with its environment and predict
its behavior.

Goals can be expressed by defining requirements on the objective functions and
performance parameters and assessed by calculating -using analysis relations- the
performances and objective function of an instantiated artifact. Two types of goals
are often found in design problems: constraint satisfaction and optimization. In
constraint satisfaction, the objective is finding instances of design artifacts within
the allowed topology relations and confinement constraints. Here, performances
are used as means of assessing the behavior of the design. For optimization,
maximizing or minimizing performances is added to the constraint satisfaction
problem. Performances are used to express the desired quality of the design
artifact.

Analysis in design is often done analytically, by simulation, or by a combi-
nation of both. They can vary from algebraic equations to complex differential
equations. Finite element methods, computational fluid dynamics, circuit simula-
tion, and other computational analysis tools offer accurate and robust analyses [4].
For the case of the gear device in Figure 3.1, a performance indicator could be the
rotational speed of the output shaft. The objective function could be expressed
by this performance, reducing the goal to that of the output rotational speed.
The goal can then be expressed by a required rotational speed, while it can be
assessed by an analysis technique for an instantiated design.

Design Rules

Design rules determine values of embodiment descriptions as function of scenario
and performances descriptions. These rules are the result of experience, and
constrain the ranges of permitted values parameters. Design rules aid the gen-
eration, evaluation and guidance processes by providing shortcuts to values that
have proven to be successful.

3.3 Problem Formulation

Deriving methods and schemes for formulating design problems has been an im-
portant subject of research in the field of Problem Solving Theory (PST) [65,
22, 21] as well as in the field of CDS [57, 5]. From the perspective of PST, Si-
mon [65] has defined problem structuring as the process of drawing upon our
knowledge to compensate for missing information, and using this knowledge to
construct the problem space. Here, design problems whose problem space are
completely defined are regarded as well-defined, while those which are not are
regarded as ill-defined. Well-defined problems can be solved using generally ap-
plicable problem-solving mechanisms, whereas ill-defined problems require other
approaches [21]. As routine design problems proceed within a known space of
functions, expected behaviors and structure variables and the problem is one of

38

3.3 Problem Formulation

instantiating structure variables [19], it is regarded as well-defined. According
to PST [22], well-defined problems are formulated as function of a known initial
state, a clear goal state, a constrained set of logical states and constraint pa-
rameters. Using this formulation structure, the following scheme is proposed for
formulating routine design problems:

• Embodiment and scenario to describe the initial state of the design.

• Objective function, performance indicators and analysis relations
to express and assess the goal of the design artifact.

• Topological relations and physical coherence constraints indicate the
set of logical states that have to hold for the design artifact to exist.

• Confinement constraints indicating the values embodiment, scenario and
performance descriptions are allowed to get.

This scheme is used by the knowledge elicitation method presented by Olthof
et al. [50]. The method allows identifying and formalizing routine design problems
at industrial settings.

3.3.1 Example: CSIM Design

Figure 3.3 graphically represents the problem formulation of CSIM design by
representing elements by nodes and relations by arcs. Labels specify the models
of the elements and relations. For explanatory reasons, not all descriptions and
relations have been included.

In the figure, Channel is regarded as embodiment element, while Mold Part
and Plastic Part are regarded as scenario elements. The goal of the design, ex-
pressed by the objective function, is to minimize the cooling time and to minimize
the temperature differences in the plastic part. Cooling time and temperature dis-
tribution are therefore regarded as performances. Analysis is represented by the
equation of Laplace, and allows the calculation of the performances (temperature
distributions and cooling time). Detailed information on the analysis methods can
be found in [62]. Topology relations specify that Channel elements are connected
to each other inside the mold and are not allowed to share its space with the
Plastic Part element. Physical coherence constraints are used to define: (a) the
minimum distance between Channel and Plastic Part (PCC-1), (b) the minimum
distance between Channel (PCC-2), (c) the diameter values of the Channel (PCC-
3) and (d) the allowed distance between Channels and the Mold Parts (PCC-4).
In [44], knowledge from expert designers has been used to formulate these three
quantities as a function of the plastic part thickness. Furthermore, other physical
coherence constraints, such as non-drillable surfaces and inlet/outlet surfaces, are
also described. As the model is used for explanatory reasons, the latter have been
kept out of the formulation.

39

Chapter 3. Information and Models

Channel

Mold Part
(Core, Cavity)

Plastic Part

Geometry,

Material Type,

Temperature

Geometry,

Material Type,

Temperature

Diameter,
Position,

length,

Minimal & Maximal

Distance to product

(PCC-1)

Scenario Embodiment

Equation: Laplace

thermal equilibrium
Performances:

Cooling Time

Temp. Distribution
Disconnected

Distance between channel (PCC-2)

Diameter (PCC-3)

Maximize (heat transfer),

Minimize (temperature
distribution)

Objective
function

Analysis

Relation

Physical

Coherence
Topologic

Relation

Distance to mold part

(PCC-4)

Connected

Inside of

Figure 3.3: Problem formulation of CSIM design.

3.4 Models in Artifactual Routine Design

This section presents models to represent descriptions and relations used in the
computational synthesis of artifactual routine design. The aim is to classify the
information contents by using common data models, which can be regarded as
basic building blocks for formulating artifactual routine design problems. Doing
so facilitates the development of abstract formulations from where to differentiate
families of design problems, and later develop algorithms to automate them.

3.4.1 Models of Descriptions

Design descriptions have been classified in five model categories: parametric,
fields, space, shapes and topologies. Each category represents a different problem
domain, as different problem solving approaches are used to generate solutions. In
this sense, design problems comprehending several dimension have higher degrees
of complexity and require a combination of methods for its automation. The work
presented in this thesis mainly focuses on the domains Parametric and Topology.

Parametric

Parameters model properties valid for the entire element. They are used to rep-
resent attributes as material properties, color, weight, density, etc. These can be
of different nature, as for example numeric, symbolic, logic, predicate, and com-
binations among them. For numeric parameters, confinement constraints define a
continuous or discrete space of possible values. For symbolic, predicate and logic

40

3.4 Models in Artifactual Routine Design

ones, all possible values have to be specified. That is for every Ai =(A1...An)
exists an Ai such that:

Ai ∈ (N,Z,Q,R,C) (3.1)
Ai = {true, false} (3.2)

Ai = Symbol (3.3)

Spaces

Describe positional attributes of elements in a topology. Positional descriptions
depend on the chosen coordinate system -Cartesian, Cylindrical of Spherical- and
the dimensions of interest -1D, 2D, or 3D. These can be considered as numeric
parameters related by a model that is determined by the chosen coordinate system.
Values can either be continuous or discrete.

Fields

Use parameters and geometric vectors to describe properties that are valid in
specific regions of the elements. Fields are specified together with an incident
zone, shown in the Figure 3.4 as cubic. Incident zone is the spatial place where
the field influences an element. An incident zone can be a volume, an area, a line
or a point. Meshed CAD models are used in Computer Aided Engineering (CAE)
software to specify incident zones. Vectors and parameters can then be attributed
to each mesh-element. In Figure 3.4 an example illustrates how a parameters and
vectors are related with their incident zones

Figure 3.4: Example of a field attribute.

41

Chapter 3. Information and Models

Shapes

Describe the form of the elements -or groups of elements- present in the design
structure. Commonly used models are based on geometric relations and graphs.
Geometry models the form by means of mathematic equations. Models are defined
with parameters related by geometric functions, the latest being usually algebraic
or differential. When the geometric function is known, parameters are instantiated
to produce new shapes. When not known, the problem becomes one of finding
the correct geometric relations. Polynomials are often used for this purpose,
having the polynomial degree and its coefficients as unknowns. Depending on the
case, confinement constraints are set either to parameters or geometric functions.
Furthermore, perimeters, areas and volumes can also be subject of restriction.

Super quadrics [26] have been broadly used for this purpose. Super quadrics
are polynomials whose degrees and coefficients values vary depending on the shape
being modeled. In Figure 3.5 a toroid super quadric shape is shown together with
its polynomial equation. By changing the values of the polynomial coefficient, the
shape of the toroid can be changed.

Figure 3.5: Super quadric of a toroid, from [26].

Attributed Graphs model shapes using nodes (representing shape primitives)
and arcs (representing the connection within primitives). Primitives might be
further decomposed into sub graphs, obtaining shape models with several levels
of abstraction. When the shape graph is specified, design generation consist in
instantiating attributes related to the graph’s nodes and arcs. When the graph
is not specified, but its primitives and relations are, shapes are generated by
constructing new graphs. Confinement constraints can be set to both, the number
and the types of primitives and relations. In Figure 3.6, a handmade symbol of
an electrical resistor shape is modeled using such an attributed graph. Arcs of the
graph represent segments, while the nodes are used to represent vertices. Labels
are used to further specify the arcs.

Topologies

For design problems whose elements can be instantiated several times, its cardi-
nality can be defined as a topology description. It reflects the number of instances

42

3.4 Models in Artifactual Routine Design

(a) Handmade resistor symbol. (b) Graph representation of resistor
symbol.

Figure 3.6: Example shape graph of electric resistor symbol.

of one element in the artifact. This variable allows controlling the instantiation
of elements when the problem is one of generating topologic structures. The con-
cept of cardinality also applies to topology relations. In this case, the number of
allowable relations is determined by its cardinality.

3.4.2 Models of Relations

Different types of models are used in design to describe relations. Their character-
istics determine the approaches required to handle them, and are here restricted
to three basic types: algebraic, differential and logic models. However, this set is
not restrictive as others can also be considered.

Physical Coherence and Objective Functions

Are commonly modeled with algebraic relations. In some cases, when the descrip-
tions are symbolic rather than numeric, logic models can be assembled. First order
logic and propositional logic models are the most common types of logic models
in design.

Analysis

These relations are often modeled by a combination of all three types. Analytic
methods are usually a combination of algebraic and logic models, while simulations
make use of numeric methods to solve differential equations.

Topology

Topology is often modeled with set theory. One framework for doing so is Region
Connection Calculus (RCC) [13], which in a qualitative fashion describes the
relation among euclidean or topological regions. It allows the formalization of
concepts as convergence, connectedness and continuity.

43

Chapter 3. Information and Models

3.5 Common Design Problem Formulations

This section presents a classification of routine design problems families. The
classification, shown in Table 3.1, is done by relating the type of descriptions and
relations, presented in Section 3.4 to problem formulation scheme presented in
Section 3.3.

Table 3.1: Common artifactual routine design problems.

Information Content P C L Sh T

Descriptions Model E S E S E S E S E S

Parametric + + + + - - + + + +

Space + + - + + + + + + +

Field - - - + + + - + + -

Shape Geometry + + - + + + - - + +

Polynomial - - - - - - + + - -

Graph - - - - - - + + - -

Topology Elements V V F F V

Cardinality Relations F V V F F
P = Parametric, C = Configuration, L = Layout

Sh = Shape, T = Topology Optimization

(+) = Present, (-) = Absent, (F) = Fixed, (V) = Variable

3.5.1 Parametric Design

When the design problem does not exhibit complex spatial, topologic and shape
requirements; and all possible solutions adhere to a common template, it is pos-
sible to simplify the problem by modeling the artifact by a set of parameters (see
Table 3.1). In these cases, problem solving becomes the process of assigning
values to parameters in accordance with the requirements, constraints, and op-
timization criterion. At present, several algorithms exist for solving this type of
problems, as for instance Genetic Algorithms (GA), Simulated Annealing (SA),
Evolutionary Algorithms (EA), etc.

3.5.2 Configuration Design

For design problems that can be modeled in terms of predefined design elements
and known topologic relation, the design process consists of assembling and con-
figuring design elements. In this case, shape descriptions and spatial descriptions
are not the main subject of design, as shown in Table 3.1 . Solutions need to sat-
isfy design requirements and constraints, as well as to approximate some typically
cost-related optimization criterion. Configurations can be generated by either in-
stantiating new relation types, or by generating new elements in the topology.
Grammatical approaches are very common in the generation of configurations.

44

3.5 Common Design Problem Formulations

Startling et al [71] developed a parallel grammar for design synthesis of mechanic
clocks. A FBS design model of the clock was produced to map the possible Func-
tions to embodiment Structures. A Function grammar (defining the connectivity
between Functions) and a Structure grammar (based in the topologic relations of
the clock) are used simultaneously to generate solutions.

3.5.3 Layout Design

Determining placement locations for components within a product housing or
container is, in short, the goal of layout design. The embodiment elements are
described by geometric relations and spatial attributes, while scenario elements
impose constraints. It is characteristic to layout design to have multiple local
optima, space discontinuities, high number of components, constraints, and mul-
tiple objectives; which makes it a difficult problem to solve. In Cagan et al. [4]
references are given to different approaches for solving these types of problem.

3.5.4 Shaping

Consists of determining the shape of the embodiment elements. Solutions are gen-
erated by either defining new mathematic relations or by assembling new graphs
structures. Shape grammars have been successfully used in the generation of ele-
ments shapes, as reported in [63]. They consist of construction rules that deter-
mine how shape primitives can be bounded to produce new shapes. McCormack
et al. [42] developed the Buick Grammar, used to generate novel Buick forms.
Super quadrics are used in [39] to recognize shape features in the CS of cooling
systems for injection molding.

3.5.5 Topology Generation

Topology generation problems consist of determining the possible material ar-
rangements in a design domain. This is often done by iteratively eliminating
and redistributing matrial chunks until the specified structural performance is
achieved. Solving this type of problems is often done by element-based methods,
such as the homogenization or the SIMP method [89]. In such problems, embodi-
ment is represented by field elements, while the scenario is represented by vectors
or shapes.

45

Chapter 4
Design Structure and
Complexity

This Chapter presents a framework to structure routine design problems and
develops a model of its complexity. The results are positioned in relation to
the model of complexity of Axiomatic Design Theory.

4.1 Introduction

In design, structure and complexity are two closely related concepts. Complexity
is a property related to the degree of difficulty or uncertainty for finding a solution
to a design problem. In order to analyze design complexity, it is necessary to
understand the structure of the problem. The structure of a design problem has
two important aspects to be studied:

• The distribution of design parameters along the problem model: all param-
eters concentrated in one element vs. several parameters scattered thorough
several elements; one level of detail vs. several levels of detail.

• The relation between what is known (design requirements) and what is un-
known: scattered along the problem model, concentrated in problem chunks,
at the top (only functional requirements), at the bottom (only design pa-
rameters) or as mix of all these possibilities.

From this perspective, design complexity depends on the structure of the prob-
lem. This chapter describes different types of complexity that have been identified
routine design problem structures. This has been done by relating ADT’s com-
plexity theory to the design formulation scheme presented in Chapter 3 and the
structuring framework presented in Section 4.2.1 of this chapter.

47

Chapter 4. Design Structure and Complexity

4.2 Structuring Routine Design Problems

Physicists model natural phenomena through differential and integral equations.
Specific problems are solved by setting boundary conditions on the differential and
integral equations, and applying solving procedures to obtain analytical expres-
sions. The resulting expression can then be used to calculate values of variables
by specifying the values of the input parameters. Consider for example the law
of heat conduction shown in equation 4.1. This differential equation models the
phenomena of heat transfer through matter from a region of high temperature to
a region of a low temperature. As this is done independent of geometry, mate-
rial properties or temperature distributions, the equation is generic. To model a
specific case of heat transfer the equation is rearranged by introducing boundary
conditions, canceling unnecessary terms and performing mathematical manipu-
lations. For example, heat conduction in one dimension between two flat plates
results, after rearranging equation 4.1, in equation 4.2. The obtained equation can
now be used to introduce known values and calculate the values of the required
parameters, as for example in equation 4.3 the time required to get temperature
T = ψ at a point x = ζ is t = ξ.

δT

δt
= a

δ2T

δx2
(4.1)

t (x, T) =
x2

π2 · a
· ln

(
8
π2
· T − TW

TMO − TW

)
(4.2)

t (x = ζ, T = ψ) = ξ (4.3)

If generalizing this structure, it can be noticed that physicist model natural
phenomena at the hand of tree phases which are solved by two types of proce-
dures, as it is shown in Figure 4.1. On the one hand, the three phases are: the
differential/integral equation, the analytical expression, and the solution. On the
other hand, the procedures are: differential and integral calculus to transform the
differential equation (phase 1) into an analytical expression (phase 2), and algebra
or numeric methods to transform the analytical expression (phase 2) into values
of unknown parameters (phase 3).

From a research perspective, this problem structure has allowed:

• defining the types of representations required for modeling each domain (i.e.
operators),

• studying the complexity of each domain by analyzing the configuration of
the used representations (i.e. equation order, equation linearity),

• developing procedures and operations to solve each problem domain (i.e.
Laplace Transformations, Newton-Raphson method)

48

4.2 Structuring Routine Design Problems

y = -0.25
 3

1 , 0
dy

x x
dx

4
4

1 5
0 1

4 4

5 1
1 1

4 4 4

C C

x
y x

x = 0 1 0 x y

Differential

equation

Analytical

Model

Analytical

Solution

Figure 4.1: Structure of problems in modeling natural phenomena.

• identifying common problem structures (i.e. Poisson’s equation, Laplace
equation)

On the other hand, some of the major advantages from an application per-
spective are:

• reusing existing problem formulation,

• utilization of standard solving methods,

• development of computer based simulation tools.

Structuring design problems as done in natural sciences is likely to drive the
automation of design problems toward more generic approaches, with advantages
in both research and application. For this research, such an structure would allow
the identification of features causing complexity, and do so independent from the
problem semantics. Furthermore, strategies for managing design complexity can
be formulated as function of problem structures.

4.2.1 Structuring Framework

By making an analogy between the information contents presented in Chapter 3
and the structure described in the previous section, it is proposed to structure
routine design problems at three different abstraction: problem class, problem
instance and problem solution. This is shown in Figure 4.2. Problem classes are
transformed into problem instances by specifying its requirements. Requirements
are specified by instantiating descriptions. Problem instances are transformed
into problem solutions by algorithms that generate instances to the unknown de-
scriptions. Therefore, one problem class can represent many problem instances,
and one problem instance can have many problem solutions, as indicated in Fig-
ure 4.3. Under this view, solving routine design is analogues to solving problems
with known differential equations.

49

Chapter 4. Design Structure and Complexity

This structure can also be used to structure innovative and creative design
problems. Solving innovative design is analogous to combining different differen-
tial equations to model various interrelated physical phenomena. Solving creative
design problems is analogous to developing new differential equations.

Problem

Class

Problem

Instance

Problem

Solution

Requirements

Placement

Requirements

Specification

Figure 4.2: Framework to structure design problem.

Problem Class

A problem class is structured in:

• Elements: are considered class descriptions, and are used to represent both,
embodiment and scenario elements. As it will be described in Chapter 5,
Element can also be differentiated by assessing the functions and types of
descriptors modeling a component.

• Relations: are considered class descriptions and are of different types, namely,
topology, physical coherence, design rules, analysis relations and objective
functions. Their descriptions can be declared within the scope of the relation
or by pointing towards descriptions of embodiment and scenario elements.

• Descriptions: are variables that characterize elements and relations by math-
ematic models.

Problem Instance

A problem instance is structured by:

• Instantiated scenario: represent scenario specifications,

• Partially instantiated embodiment elements or parameters: represent em-
bodiment requirements, and impose constraints to the space of possible
solutions.

• Instantiated performance parameters: represent the performance specifica-
tions the embodiment has to meet.

50

4.2 Structuring Routine Design Problems

Problem Solution

Consist of fully instantiated elements, relations and parameters. For under-
constrained problem-instances, many solutions may exist for one problem in-
stance. This depends on how constrained the problem is. An underconstrained
will allow for multiple solutions, while a systems of equation type of problem will
have a limited number of solutions.

PC

PI PI PI PI PI

PS

PS

PS

PS

PS

Problem solutionPS

Problem instancePI

Problem classPC

Figure 4.3: Problem structure dependencies.

The mayor consequence of utilizing this structure in the development of CAS
systems, is that generation algorithms and software architectures have to be ca-
pable of handling different types of problem instances and problem classes. Devel-
oping methods for automating specific routine design problems have to be valid
for a design problem class, rather than for specific problem instance.

4.2.2 Example: Spring Design

Consider for example the spring design formulation shown in Figure 4.4(a). Fig-
ure 4.4(b) shows that the problem class corresponds to the declaration of the
different types of parameters of the problem formulation. By setting require-
ments, the problem class is transformed into one problem instance. However, by
requirements to other parameters, another problem instance is obtained.

51

Chapter 4. Design Structure and Complexity

gObject

k
Lc

M

L0

Fspring

Fo

scenario

embodiment

performance

embodiment

scenario

scenario

performance

gravity constant

spring constant
compressed length

mass

free length

compression force spring

force object

Fg = m g

Parameters

Analysis relation

Fspring - Lc)(L0= k

spring

Fo

Fg

Fg scenarioforce ground

Fspring = Fg = Fobject

Topology relation

Spring EC Object Spring EC Ground

(a) Spring design problem formulation.

Object Spring Ground

M

k

Lc

L0

Fspring

Fo
Fg

Lc

L0

Object Spring Ground

M = 5 Kg
k

Lc

L0 = 8cm

Fspring

Fo
Fg

Object Spring Ground

M = 5 Kg
K = 12.5 cm/Nm

Lc = 4cm

L0 = 8cm

Fo = 50 Nm Fg = 50 Nm

Problem Class

Problem Instance

Problem Solution

(b) structure of spring design example.

Figure 4.4: structure of spring design example.

52

4.3 Complexity in Routine Design

4.3 Complexity in Routine Design

Complexity of systems can be studied from different points of view. This thesis
is based on the notions of design complexity stated in Axiomatic Design Theory
(ADT) [74], explained in Chapter 2. The basic idea of this model is that without
difficulty in understanding (or making, operating, etc.), a system is not complex.
In this sense, complexity is the property of a system that makes it difficult to
understand with the available knowledge about its constituents parts. Tomiyama
further elaborates this view, by stating that complexity can be studied from the
view point of knowledge structure (see Section 2.2.3), identifying two types of
complexity: complexity by design and intrinsic complexity of multi-disciplinarity.
The former is attributed to the structure of the design problem, while the latter
deals with behavioral characteristics.

This thesis adopts ADT definition of complexity, and focuses on complexity by
design. The three main reasons why this model has been chosen as framework in
this research are: (1) complexity is regarded as a relative property, (2) complexity
is the consequence of engineering activities, and (3) it is assumed that complexity
can be managed. ADT model of complexity is used to identify different types of
complexities in routine design.

4.3.1 Translating ADT Terms

In order to apply ADT theory of complexity to routine design, it is first required
to relate the terms in both theories:

• Functional Requirements (FR’s): correspond to the functions, per-
formances and scenario descriptions proposed as information contents in
Chapter 3. FR’s model either elements or parameters.

• Design Parameters (DP’s): correspond to the embodiment descriptions
in the routine design formulation, and model elements and parameters.

• Design Matrix (DM): is formed by the analysis, topology and physical
coherence constraints.

In order to facilitate the analysis of complexity, ADT terms are interchanged
with the design formulation terms in in the following sections.

4.3.2 Model of Complexity

Figure 4.5 shows the identified complexity types in routine design. As subse-
quent subsections will explain, complexity of problem classes deals with incorrect
problem formulations, while complexity in problem instances deals with deriving
strategies for solving it. Complexity of design solutions is related to the number
of elements, parameters and relations of the design solution. Physical domain

53

Chapter 4. Design Structure and Complexity

Time-independent

imaginary complexity

Time-dependent

combinatorial

complexity

Time-independent

Imaginary complexity

Characteristic

Inconsistent or incomplete

problem model

No separation of information

types

Unknown cardinalities

Instantiated vs. non instantiated

elements

Problem

Class

Problem

instance

Type

Problem

Solution

Physical domain

complexity

Large numbers of instantiated

elements, parameters and

relations

Structure Dimention

Instantiated vs. non instantiated

parameters

Figure 4.5: Complexity map for routine design problems.

complexity is out of the scope of this research, as this work focuses on solving
problems rather than understanding complex solutions.

4.3.3 Complexity of Problem Classes

Time-independent complexity captures the complexity of a system in which the
time dimension does not limit achieving its functional requirements. In other
words, the range of the system does not change in time. In routine design, the
process of moving from problem classes to problem instances is not a synthesis
process by itself. This is rather a human process that involves specifying which
are the parameters and elements characterizing the input of the problem. There-
fore, complexity here is related to how well the problem has been formulated,
and regards two types of uncertainties. One is the uncertainty of having all the
required information in the problem formulation. The second is the lack of dif-
ferentiation between problem chunks and its interrelations. Figure 4.6 illustrates
this by sketching three possible states of a problem class according to its level of
complexity. The result of both uncertainties result in incomplete and unorganized
information contents. So, both aspects are caused by the lack of knowledge, or
ignorance, in formulating the design problem.

Ignorance of FRs and DPs is related to the failure to properly understand
them in a design task. This is caused by a faulty or incomplete description

54

4.3 Complexity in Routine Design

E3

E1

E2

E4 P12

R1

P9

P8

P4

P5

P6

P7
P1

P2

P3

P11

P16

P14

P17

P18

P19
P13

P15

R3

R2
P

R

E Element

Parameter

Relation

Pn

Non

considered

Parameter

PnPn1

Pn2

(a) Inconsistent and unstructured design problem.

E3

E1

E2

E4 P12

R1 P8

P4

P5

P6

P1

P2

P11

P14

P19

R3

R2

Embodiment

Scenario

Topology

Objective

Analysis

Coherence

(b) Consistent and unstructured design problem.

H

E1

P8
P5

P1
E3

P19

E2

P4 P11
E4 P12

P6

R1

R3

C

R2

E42

P14

E41

P2

H

C

Embodiment

Scenario

Has a

ACO-Objective

ACO-Analysis

ACO-Coherence

Is connected

(c) Consistent and structured design problem.

Figure 4.6: Three states of problem classes according to its complexity.

55

Chapter 4. Design Structure and Complexity

of the functions, performances and scenarios in the problem formulation. As
result, one would be addressing a wrong problem. Complexity emerging from
incomplete problem formulations is time-independent imaginary complexity. In
ADT, imaginary complexity is defined as the uncertainty that arises because of
the designer’s lack of knowledge and understanding of a specific design itself [74].
In order to solve this, the FRs of the problem have to be identified and related
to the problem’s DPs. Then, the problem can be reformulated in terms of the
emerging relations between FRs and DPs. By doing so, the imaginary component
of the complexity can be managed. Two methods have been developed in this
work to manage time-independent imaginary complexity in problem classes:

• FBS based formulation: is presented in Chapter 5, Section 5.2. This method
aids the exploration of the information required to formulate a given design
problem. The goal of the method is to obtain a consistent mapping between
a problem’s function, its behaviors, and the parameters and relation in its
formulation. The last ones following the scheme presented in Chapter 3.

• ADT based decomposition: is described in Chapter 5, Section 5.3. This
method deals with the decomposition of the problem into smaller problem
chunks. The goal is to distribute the information of the problem among
different abstraction levels.

4.3.4 Complexity of Problem Instances

Time-independent Real Complexity

Real complexity appears in multi-objective problems, where one parameter has to
satisfy contradicting objectives. This is caused when several disciplines determine
an artifacts behavior. For example, the more lanes a highway has, the more
traffic it can accommodate. At the same time, as the number of lanes increases,
the number of accidents also increase. Designing highways with the objectives of
traffic maximization and accidents minimization has a contradiction, and therefore
is a problem with time-independent real complexity. This type of complexity is
solved in routine design using constrain satisfaction and optimization techniques.
Therefore, this type of complexity is not further treated in this work.

Time-independent Imaginary Complexity

Imaginary complexity originates from the fact that design requirements are set
at different combinations of parameters and elements. As consequence, it is not
known a priori in which order the problem will be solved. Furthermore, when the
DM is uncoupled, a particular order is required for solving the problem. Imaginary
complexity depends on the relations between known ad unknown cardinalities as
well as on the relation between instantiated and non instantiated elements and

56

4.3 Complexity in Routine Design

parameters. The former is regarded in this work as knowledge distribution, while
the latter is regarded as requirements distribution.

From a knowledge distribution viewpoint, the more cardinalities that are
known in a problem instance, the lower its uncertainty is regarding the number
of elements to instantiate. Moreover, as the cardinalities of elements are often
interrelated among each other, modifying one automatically leads to the modifi-
cation of others. In this sense, knowledge distribution refers to the distribution
of known cardinalities among the elements of the problem.

Requirements distribution, on the other hand, refers to the distribution of in-
stantiated and non instantiated elements and parameters. For elements, complex-
ity regards the uncertainty of having to apply bottom-up or top-down approaches,
while for parameters it regards the uncertainty of knowing in which order to solve
the constrained system.

Time-dependent Combinatorial Complexity

For problem instances, combinatorial complexity occurs when the design problem
consists in generating complex topologies or shapes in which embodiment elements
are instantiated several times within one design solution (for example, the number
of gears required in a gear box). This results in a DM with time-dependent varying
size and terms. When no knowledge is available about the number of instances
required to satisfy the FRs, the problem presents time-dependent combinatorial
complexity. One way of recognizing this type of complexity is by assessing the
cardinalities of the elements in the problem formulation. When the ranges of
cardinalities are not known, or cannot be written as function of other parameters,
the design problems has combinatorial complexity.

Complexity Management

Complexity management of problem instances is limited to the domains of para-
metric and topology models, as addressed in Chapter 3, Subsection 3.4.1. The
research on complexity management for the domains of space, shapes and fields
is subject of further research.

Complexity management is performed from three different perspectives: rep-
resentations, manipulating building blocks, and manipulating parameters. Chap-
ter 6 proposes a generic model for representing design problem structures. This
model is used in Chapter 7 to develop a method for translating the topology
characteristics of a design problem into a algebraic model. This permits solving
topologies by using algebraic solving procedures. Furthermore, a design gram-
mars method is described for managing the combinatorial complexity of design
problems. Chapter 8 presents a constraint solving algorithm for deriving solving
orders of non-instantiated elements and parameters. Chapter 9 integrates these
methods into a new method for CDS, which allows automating in a generic fashion
problems with parametric and topology models.

57

Chapter 4. Design Structure and Complexity

4.3.5 Example: CSIM Design

According to this model of complexity, the design of CSIM has the following types
of complexity:

1. Problem class, time-independent imaginary: Is caused by an inconsistent
formulation. Literature does not present exact problem formulations. No
separation of information contents. Furthermore, all information content is
attributed to one element type channel.

2. Problem instance, time-independent imaginary: Different ways of solving
DM, with different levels of difficulty. There are different approaches for
placing and configuring channels.

3. Problem instance, time dependent combinatorial: Number of DPs explodes
as function of time. The number of channels and its configuration is not
known a priori, and changes as the design is being solved. The placement
and instantiation of one channel determines the number and position of
other channels.

58

Part III

Theories and Methods

59

Chapter 5
Managing Complexity I:
Information Contents

This Chapter describes two methods that aim at managing complexity of
problem classes. The first method focuses on how to formulate the infor-
mation contents and the second on decomposing the problem into different
levels of detail.

5.1 Introduction

The first challenge encountered when developing methods for CDS is the for-
mulation of the design problem and definition of its building blocks; thus the
development of the model of the artifact upon which designs can be generated.
This chapter presents two methods to define a design problem’s building blocks.
While the first method deals with formulating “good” problems, the second deals
with the distribution of the building blocks in different levels of abstraction. Both
methods are paper based, and are meant to be applied previous to the develop-
ment of strategies and algorithms for synthesis automation.

5.2 Method 1: FBS based Formulation

Design formulation is the active process through which a routine design problem
is formally identified and described. The result is a set of representations that
model the problem class. The description of the problem should explicitly reflect
the structure and relations of the design problem. Therefore, the goal of FBS
based formulation is to explore the set of elements, description and configura-
tion (as defined in Chapter 3) required for formalizing a given artifactual routine
design problem. The methodology, which consists of the four steps shown in Fig-

61

Chapter 5. Managing Complexity I: Information Contents

1st step

FBS
Formulation

2nd step

Performance
& Scenario
Exploration

3rd step

Analysis
Technique
Exploration

4th step

Embodiment
Exploration

 Information for
 an FBS model

Information contents for a routine design problem

- Behavior

- States

- Performance
 parameters

- Scenario

 parameters

- Embodiment
 parameters

- Element

 Constraints

- Topologic

 Relations

- Analysis

- Elements

- Function

- Principle

- Structure

Vocabulary of

elements

Description of the

elements

Configuration of

elements

Figure 5.1: The FBS based design formulation method.

ure 5.1, uses FBS modeling for assessing the function, behavior, principle, state
and structure representation of the design object in question. States are used for
deriving performance and scenario parameters, while embodiment parameters are
defined by relating performances and scenario to a given analysis technique. This
method is used in M. Olthof [49] to determine the model of the design problem
of a clock and the design problem of a runner gate system for injection molding.
Subsection 5.2.1 demonstrated the method at the hand of CSIM design.

Step 1: FBS Formulation

The first step consists of defining the functions, structure elements and principles
of the design problem in question, given that these are known entities when dealing
with routine design. This input is used to formalize the behaviors that support the
functions. The (sequence of) states that the structure is meant to experience are
described by relating the design structure elements and the derived behaviors to
principles. Topology relations can be identified by formalizing the connectedness
of the elements in the structure.

Step 2: Performance and scenario exploration

Parameters describing the properties of states or sequence of states can now be
derived from the FBS formulation. For this purpose, the parameters present in

62

5.2 Method 1: FBS based Formulation

both principle and state serve as entities representing performance and scenario
parameters. The dynamics implied by the sequence of states is also translated
into a performance parameter.

Step 3: Analysis Technique Identification

The analysis technique can now be identified by assessing the principles ruling the
behavior of the design artifact. This is done by assessing existent techniques (e.g.
literature, CAE, expert knowledge) or by deriving a new method. In either case,
the analysis method has to integrate the performance and scenario parameters
identified in the third step of the method. Furthermore, depending on the desired
level of detail -or abstraction-, different analysis techniques can be used.

Step 4: Embodiment Definition

The analysis technique can now be used to define the parameters describing the
embodiment for the chosen abstraction level. This is done by identifying the set
of parameters present in the analysis technique describing the characteristics of
the artifacts structure.

Step 5: Design Rules and constraints

Once the performance, embodiment and scenario parameters have been identi-
fied, the constraints and design rules can be formalized. Element constraints can
now be represented mathematically by relating the found parameters. Confine-
ment constraints are stated by defining the ranges of values of each embodiment
parameter. Confinement constraints are meant to avoid physical impossibilities
by confining the parameters between limits the designers considers appropriate,
depending often on experience. To specify design rules, knowledge has to be
assessed. Having the parametric descriptions and constraints can aid the pro-
cess of extracting knowledge from diverse sources, like design books, experts and
Internet. In appendix a method for eliciting expert knowledge is presented.

5.2.1 Example: CSIM Design

Figure 5.2 shows an overview of the information flow of this method for CSIM
design. The following subsections further detail its application.

Step 1: FBS Formulation

Consider the design of cooling systems for injection molding shown in Figure 5.3.
Here, the cooling system functions are mapped to behaviors that allow the re-
quired function to exist. For example, the function ‘Cool Down Plastic Part’ is
mapped to the behavior ’Extract Heat From Plastic Part’. The figure also shows
how structure and behavior are related to the states by means of a principle, in

63

Chapter 5. Managing Complexity I: Information Contents

B
e
h

a
v
io

r

…
.

S
ta

te
s

H
om

og
en

eo
us

Te

m
pe

ra
tu

re

C
oo

l m
o

ld

H
ot

 m
ol

d

C
oo

l m
e

lt

H
ot

 m
el

t

P
ri
n

c
ip

le

H
ea

t t
ra

ns
fe

r
th

eo
ry

C
oo

lin
g

tim
e

S
tr

u
c
tu

re

M

ol
d

 C
oo

lin
g

sy
st

e
m

P
um

p
Te

m
pe

ra
tu

re

co
nt

ro
l u

ni
t

 C
oo

lin
g

ci
rc

ui
ts

A
bs

or
bi

ng

ch
an

ne
ls

C

on
ne

ct
or

ch

an
ne

ls

In
le

t/
ou

tle
t c

ha
nn

el
s

F
u
n

c
ti
o
n

In
 m

in
im

u
m

 ti
m

e

ho
m

og
en

eo
us

ly

C
oo

l d
ow

n

pl
as

tic
 p

ar
t

M
an

uf
ac

tu
re

 p
la

st
ic

 p
ar

t

S
ub

-f
un

ct
io

ns
 ..

.

..
.

E
m

b
o
d

im
e
n

t

D
c
h
a

n
n
e

l 1
 =

 C
ha

nn
el

 d
ia

m
et

er

X
d

is
ta

n
c
e

 =
 D

is
ta

nc
e

 c
ha

nn
el

 —
m

el
t

Y
d

is
ta

n
c
e

 =
 D

is
ta

nc
e

ch
an

ne
l —

ch
an

ne
l

S
c
e
n

a
ri
o

T
m

ol
d,

 s
ta

rt
T

m
el

t,
st

ar
t

S

m
e
lt

…

…

...

P
e
rf

o
rm

a
n

c
e

T

m
ol

d,
 e

nd

T
m

el
t,

en
d

Δ

T
m

o
ld

Δ
T

m
e

lt

…

...

A
n

a
ly

s
is

f(

T
m

ol
d,

st
ar

t
; T

m
el

t,
st

ar
t ;

T m
ol

d,
 e

nd
 ;
 T

m
el

t,
en

d
;
Δ

T
m

e
lt
;
Δ

T
m

el
t ;

S
m

e
lt

;

D
c
h
a

n
n
e

l 1
 ;

X
d

is
ta

n
c
e

 ;
Y

d
is

ta
n
c
e

 ;
…

)

T
o
p

o
lo

g
ic

 R
e
la

ti
o
n

s

is
_c

om
po

se
d_

of

is
_c

on
ne

ct
ed

_t
o

E
le

m
e
n

ts
 C

o
n

st
ra

in
ts

do
_n

ot
_s

ha
re

_s
pa

tia
l_

lo
ca

tio
n

P
ri
n

c
ip

le

H
ea

t t
ra

ns
fe

r
th

eo
ry

...

D
ef

or
m

 p
la

st
ic

K
ee

p
ph

ys
ic

a
l

co
ns

is
te

nc
y

E
xt

ra
ct

 h
ea

t f
ro

m

pl
as

tic
 p

ar
t

M
ax

im
iz

e
he

at

tr
an

sf
er

C
on

st
an

t h
ea

t f
lo

w

Figure 5.2: Overview of the design exploration method in the design of cooling systems
for injection molding.

64

5.2 Method 1: FBS based Formulation

Function Behavior State Structure

Principle

Cool down the
plastic part

Cool in minimum
time

Cool
homogeneously

Simple

Channels
Baffles

Bubblers

Cooling circuits

Part with
constant

temperature

Cool Mold

Heat Transfer Theory

Extract Heat
from Plastic

Part

Extract Heat
at Constant
Heat flow

Maximize
Heat Transfer

Flow Pump Temperature
control unit

Hot Mold

Coolant
supply

manifolds

Collection
manifolds

Cool Melt

Hot Melt

Figure 5.3: FBS description of CSIM design.

this case heat transfer theory. The structure is composed of several components.
However, for explanation purposes, only cooling channel layout design is taken
into consideration. Examples of topology relations are:

• cooling circuit is composed of cooling channels

• one cooling channel is connected to one cooling channel

Examples of physical coherence constraints are:

• cooling channel does not share spatial location with melt.

• cooling channel starts at mold surface

• cooling channel ends at mold surface

• cooling channel is confined in mold

Step 2: Performance and Scenario Exploration

Table 5.1 presents a generalized summary of performance and scenario parame-
ters. The dynamics implied by the sequence of states is also translated into a
performance parameter. In the case of cooling system design, the difference in
time between both states is one performance parameter that describes the time re-
quired to change from one state (hot melt) to the other(cold melt). The complete
description of performance and scenario parameters is presented in Table 5.1.

65

Chapter 5. Managing Complexity I: Information Contents

Table 5.1: State based performance and scenario mapping.

State Sequence State variables Type
Hot Mold First Temperature Mold Scenario
Hot Melt First Temperature Melt Scenario
Cool Mold Second Temperature Mold Performance
Cool Melt Second Temperature Melt Performance
Part constant
Temperature

Second Temperature Differ-
ence in Part

Performance

Step 3: Analysis Technique Identification

Consider the case of the cooling system design for injection molding. A simple
analysis has been chosen from [62]. The analysis is derived from the equation of
heat transfer by conduction for a substance in rest under several assumptions.
The analysis consists of the following calculation:

1. Calculate heat transfer from the melt to the cooling medium using equa-
tion 5.1.

2. Calculate the shape factor (Se), Reynolds (Re) number, the coolant heat
transfer coefficient (α) and the thermal diffusivity of the melt (a) using
equations 5.2, 5.3, 5.4 and 5.5 respectively.

3. Consider Qabs = Qm, and use results of 5.2, 5.3, 5.4 and 5.5 to solve the
system composed by equations 5.6 and 5.7.

The set of equations 5.1 to 5.7 represent the analysis technique that has been
chosen for the purpose of demonstrating the methodology. Each one follows from
different partitions, obtaining that different parameters appear in different anal-
ysis equations. The analysis has been formulated in such a way that it holds at
both sides of the axes of symmetry shown in Figure 5.4. This allows assessing the
temperature difference between the two sides of the mold, which was selected as
performance parameters in the second step of the method. It is worth mentioning
that 3D analysis formulation is better suited for the performance calculation of
this type of problems. However, to describe the performance and scenario param-
eters so far considered, the analysis technique here presented suffices. Table 5.2
presents a list with the description of the used symbols.

Qabs = 10−3 · [(TM − TE)Cps + im] · ςm ·
s

2
· x (5.1)

Se =
2π
x4
·
[
ln
(

2 · x · sinh
(

2 · π · y
x

)/
π · d

)]−1

(5.2)

66

5.2 Method 1: FBS based Formulation

Re =
10−3 · u · d

v
(5.3)

α =
0.031395

d
·Re0.8 (5.4)

a = λ/ς · Cp (5.5)

tk =
10−3

Qm
·
(

1
λst · Se

+
1

α · 10−3 · 2 · π ·R

)−1

∗ (TW − Twater) (5.6)

tk =
s2

π2 · a
· ln
(

4
π
· TM − TW

TE − TW

)
(5.7)

Step 4: Embodiment Definition

Embodiment parameters are now identified by selecting the structural variables
present in the analysis relations. For the case of design of cooling systems, the
embodiment parameters are sketched in Figure 5.4. In Appendix B, a complete
description of the elements, relations, parameters and constraints of CSIM are
presented.

d

y

x

Mold

Melt

Cooling channel

Axis of symmetry
2

2
s

Pi,k

Figure 5.4: Embodiment definition in FBS based formulation method.

Design Rules and Constraints

For the case of cooling channels layout design, some examples are:

1. The topologic relation, cooling channel is confined in mold, can be modeled
by equation 5.8

67

Chapter 5. Managing Complexity I: Information Contents

Table 5.2: Design parameters in CSIM

Symbol Units Description Classification
Qabs KJ/m Heat content of melt Scenario
Qm KJ/m Heat absorbed by coolant Performance
tk s Cooling time Performance
S mm Part thickness Scenario
X mm Distance X Embodiment
Y mm Distance Y Embodiment
D mm Diameter of cooling channel Embodiment
R mm Radius of cooling channel Embodiment
Pi,k (mm,mm) Point i of cooling channel k Embodiment
i No Index: 1 is start and 2 is end

point of cooling channel
Embodiment

k No Index: 1. . . N cooling channel Embodiment
TM

0C Melt (Molding) temperature Scenario
TE

0C De-molding temperature Performance
TW

0C Temperature of mold Performance
Twater

0C Temperature of cooling water Scenario
im KJ/Kg Latent heat of fusion of the

polymer
Scenario

Cps KJ/KgK Specific heat of the polymer Scenario
ς g/cm3 Melt density Scenario
a cm2/s Thermal diffusivity of the melt Scenario
V m2/s Kinematics viscosity of water Scenario
U m/s Velocity of cooling water Scenario
λst W/mK Thermal conductivity of mold

steel
Scenario

Cp KJ/KgK) Specific heat of water Scenario
λ W/mK Thermal conductivity of water Scenario
α W/m2 Heat transfer coefficient Scenario
tk s Cooling time Performance

68

5.3 Method 2: ADT based Decomposition

2. Element constraint avoiding two cooling channels sharing the same space in
equation 5.9

3. Design rule defining the diameter of the cooling channel as function of the
part thickness in equation 5.10

Pi,k ∈Mold (5.8)√
(xi,k − xi,k+1)2 + (yi,k − yi,k+1)2 − (DK +Dk+1)

2
≤ ζ1 (5.9)

ζ2 ≤ D ≤ ζ3 (5.10)
Note that the symbol ζi is used for representing a border value, while the word
Mold represents the element mold.

5.3 Method 2: ADT based Decomposition

The goal of this method is to decompose the design problem class into several
independent levels of abstraction. Decomposing the design into smaller chunks -a
divide and conquer strategy- is often used to reduce complexity [77], as for example
in ADT [73] and MDO [1]. However, the resulting chunks are required to have
clear boundaries and governing principles. According to Goel et al. [21], design
decomposition has to be based on problem structure. This avoids unwanted side
effects, such as multiple interdependencies among sub-problems and disjointed
sub-problems. Therefore, the method presented decomposes the problem at the
hand of the problem structure. The method (applied both in the functional
domain and in the physical domain) consists of the three steps shown in Figure 5.5:

• Identification: determines the space of FRs and classifies the types of DPs
involved in the problem.

• Reformulation: assembles the obtained FRs and DPs into a new decomposed
problem model

• Separation: separates the reformulated problem in abstraction groups ac-
cording to the problem’s DM.

In Subsection 5.3.3 the method is applied to the design CSIM. In Jauregui
Becker et al. [29] the method is applied to the design of Printed Circuit Boards.

5.3.1 Functional Domain

In the functional domain, the method consists of identifying functional elements,
identifying its instantiation order and encapsulating the resulting structures into
new problem formulations. Functional elements are considered high level DP
related to one (or a group of) FR(s).

69

Chapter 5. Managing Complexity I: Information Contents

Identification Reformulation Separation

FR, DP

Figure 5.5: The ADT based decomposition method.

Functional Decomposition

An artifact overall function is usually composed of a set sub-functions attributed
to individual or groups of elements. Functional decomposition methods have
been broadly used to assist conceptual design phases, as for example in ICDM
(Integrated, customer driven, Conceptual Design Method) [23]. In this research,
identification in the functional domain allows obtaining the functional map of the
artifact being designed. This is achieved by:

1. Listing the functions of each of the elements involved in the formulation.

2. Elements undergoing more than one non-additive function (independent
functions) are split into new element definitions: one element for each func-
tion.

3. Formalizing how one element’s function acts upon other elements.

Reformulation

The reformulation step consists in making a new problem formulation based on the
functional elements that resulted from applying the previous step. To do so, the
new topology relations among functional elements are formalized. In addition, the
topology relations of the mother elements are inherited by the new elements. The
direction of the emerging topologic relations among functional elements equals
the direction in which functions are applied among them. This follows from
the principle that the direction in which functions are applied expresses how
one element instantiation is limited by the previous instantiation of others. The
resulting map of elements and topologic relations can be seen as the set of syntactic
rules indicating the constraints imposed in the elements instantiation order.

Separation

Now that all emerging relations have been formalized, it is assessed whether the
design problem can be separated into smaller chunks. According to ADT, this is
possible if the DM is uncoupled or decoupled. Therefore, the separation step con-
sists in assembling the DM of the reformulated problem and deriving an appropri-
ate instantiation order that manages the time-independent imaginary complexity
of the system.

70

5.3 Method 2: ADT based Decomposition

5.3.2 Physical Domain

The application of the method in the physical domain is based on the design de-
scriptions classification presented in 3.4.1. This classification is used to decompose
elements in different primitives, where each primitive encapsulates attributes that
correspond to one type of description. By doing so, building blocks with focused
search ranges are found. Furthermore, the method manages imaginary complexity
by firstly integrating physical coherence constraints into the resulting primitive
elements, and secondly by introducing periodicity in the system.

Identification

First, embodiment and scenario parameters are classified in one of the following
groups:

• Parameter: models the properties applicable to a whole element. These can
be of different nature, as for example numeric, symbolic, logic, predicate
and combinations among them.

• Space: describes the position of the elements and depends on the chosen
coordinate system (Cartesian, Cylindrical of Spherical) and the dimensions
of interest (1D, 2D, or 3D).

• Field: uses parameters and geometric vectors to describe properties that
hold for specific regions of the elements. Fields are specified together with
an incident zone, which is the spatial place where the field influences an
element. An incident zone can be a volume, an area, a line or a point.

• Shape: describes the form of an element or groups of elements. Commonly
used models are based on geometry and shape graphs.

• Topology: uses topology relations to describe the disposition of elements in
design. Cardinality is used to measure the number of times an element is
instantiated in the topology.

For example, the layout design of boxes would have spatial descriptions (its
position) and shape descriptions (the length, width and depth of the boxes).

Reformulation

Reformulation consists of encapsulating each of the identified description dimen-
sions into a new primitive element and formalizing the physical coherence con-
straint among them. In this way, a new problem formulation is obtained. In
the previous example this would mean that a box is composed out of a primitive
element shape and a primitive element position.

71

Chapter 5. Managing Complexity I: Information Contents

Separation

This step consists of separating the reformulated problem into smaller chunks
by assessing the DM of the resulting problem. As the interest here lays in the
physical domain, the DM has to describe the interrelations among the primitive
elements, or DPs, of the problem. As result, primitive elements are set to different
levels of abstraction.

5.3.3 Example: CSIM Design

The example here presented is based on the model present in Figure 5.6, which is
a simplification of the results gotten in the previous example.

Channel

Mold Part
(Core, Cavity)

Plastic Part

Geometry,

Material Type,

Temperature

Geometry,

Material Type,

Temperature

Diameter,
Position,

length,

Minimal & Maximal

Distance to product

(PCC-1)

Scenario Embodiment

Equation: Laplace

thermal equilibrium
Performances:

Cooling Time

Temp. Distribution
Disconnected

Distance between channel (PCC-2)

Diameter (PCC-3)

Maximize (heat transfer),

Minimize (temperature
distribution)

Objective
function

Analysis

Relation

Physical

Coherence
Topologic

Relation

Distance to mold part

(PCC-4)

Connected

Inside of

Figure 5.6: Problem formulation of CSIM design.

Functional Domain: Decomposition

Consider the case of injection molding cooling systems. To decompose the element
Channels we start by listing its functions:

• Function 1: to cool down the melt. Channels are placed close to the part ge-
ometry and arranged such that heat is transferred in a homogeneous manner
from the melt to the coolant flowing through it.

• Function 2: to transport the coolant. Coolant is transported between chan-
nels absorbing heat (function 1) to constitute cooling circuits.

• Function 3: to exchange coolant with the environment. Channels are used
to connect the cooling circuits with the external surface of the mold.

72

5.3 Method 2: ADT based Decomposition

As these functions are not additive but complementary, the element channel
is decomposed into three different elements: (a) Absorber channels to fulfill func-
tion 1; (b) Exchanger channels to fulfill function 2; (c) Connector channels to
fulfill function 3. Figure 5.7(a) presents the resulting channels and their func-
tions assembled in a model. As shown, the new element Absorber channel applies
its function to the scenario element Plastic Part, Connector channels apply their
function to the element Absorber channel, and the Exchanger channel applies its
function to both the Connector channel and the Absorber channel.

Functional Domain: Reformulation

In Figure 5.7(b) the reformulated CSIM is presented. The figure shows both the
functional elements and the topology relations that have emerged. Here, each
channel element type can be connected to another channel element of the same
type (relations 3, 5 and 9). Connector channel elements can be connected to
Absorber channels (relation 12). However, the relation does not work in the
opposite direction. This is because Connector channels function is constrained by
the previous existence of an arrangement of Absorber channels, as indicated in
Figure 5.7. A similar situation occurs for the relation between Exchanger channels
and the partial circuits formed by the arrangement of Absorber and Connector
channels (relations 6 and 8): the existence of the former is constrained by the
previous existence of the latter.

Functional Domain: Separation

For the case of CSIM, a DM is assembled by considering the relations between
the FRs and the DPs shown in Figure 5.7, obtaining:

FRs DM DPs Cool Melt
Transport Coolant
Exchange Coolant

 =

 9 − −
12 5 −
6 8 3

 Absorber Channel
Connector Channel
Exchanger Channel

 (5)

As shown, the DM is decoupled and square, and can be separated into three
independent problem formulations. The first is shown in Figure 5.8(a). Here, Ab-
sorber channels are first instantiated by taking into considerations the relations
shown in the figure. In a similar manner, Connector channel are designed con-
sidering the Absorber channel as scenario elements, shown in Figure 5.8(b). The
formulation in Figure 5.8(c) is assembled for the design of Exchanger channels. If
the number of FRs does not match the number of DPs, the resulting DM is not
square. In such a case, a DM of the relation among the DPs is better suited for
determining the appropriate instantiation orders.

73

Chapter 5. Managing Complexity I: Information Contents

Absorber

channels

Exchanger

channels

Connector

channels

Supply coolant Exchange coolant

Exchange coolant

Plastic

Part/Melt

Cool melt

(a) Functional elements in cooling layout design.

Absorber
Channels

Exchanger

Channels

Connector

Channels

Plastic Part/

Melt

Is_connected_to
Is_connected_to

Is_connected_to Is_connected_to

Is_connected_to

Inside of

Mold Part

(Core, Cavity)

Inside of

Inside of

Disconnected

Disconnected

Disconnected

1

2

3 5

6

7

9

10

11

12

4

Is_connected_to

8

(b) Decomposed cooling layout design.

Figure 5.7: Reformulation of CSIM.

Physical Domain: Identification

In this step, descriptions are categorized around the five attributive dimensions.
In the case study of CSIM design, the identification of primitive elements is done
by analyzing the type of description used to model them. As the elements Ab-
sorber channels, Connector channels and Exchanger channels are modeled with
the same descriptions, the identification has been generalized in an element Chan-
nel, which represents either one of the three before mentioned types. Channels
have attributes in two domains:

• Space: models the position of a channel inside the mold. The position is
modeled by three coordinates in the Cartesian coordinate system.

• Shape: models the geometry of a channel by the descriptions diameter (D)
and length (L).

74

5.3 Method 2: ADT based Decomposition

Absorber
Channels

Plastic

Part/Melt

Cool melt

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber

Channels

Connectors

Channels

Supply coolant

Is_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber
Channels

Exchanger

Channels

Connectors
Channels

Exchange coolantExchange coolant

Is_connected_toIs_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Scenario

Embodiment
Function

Topologic relation

(a) Sub-Problem 1: Absorber channels design (b) Sub-Problem 2: Connectors channels design

(c) Sub-Problem 3: Exchanger channels design

Disconnected
Plastic

Part/Melt

Disconnected

Plastic

Part/Melt

Disconnected

(a) Sub-problem 1: absorber channel design.

Absorber
Channels

Plastic

Part/Melt

Cool melt

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber

Channels

Connectors

Channels

Supply coolant

Is_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber
Channels

Exchanger

Channels

Connectors
Channels

Exchange coolantExchange coolant

Is_connected_toIs_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Scenario

Embodiment
Function

Topologic relation

(a) Sub-Problem 1: Absorber channels design (b) Sub-Problem 2: Connectors channels design

(c) Sub-Problem 3: Exchanger channels design

Disconnected
Plastic

Part/Melt

Disconnected

Plastic

Part/Melt

Disconnected

(b) Sub-problem 2: connector channel de-
sign.

Absorber
Channels

Plastic

Part/Melt

Cool melt

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber

Channels

Connectors

Channels

Supply coolant

Is_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber
Channels

Exchanger

Channels

Connectors
Channels

Exchange coolantExchange coolant

Is_connected_toIs_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Scenario

Embodiment
Function

Topologic relation

(a) Sub-Problem 1: Absorber channels design (b) Sub-Problem 2: Connectors channels design

(c) Sub-Problem 3: Exchanger channels design

Disconnected
Plastic

Part/Melt

Disconnected

Plastic

Part/Melt

Disconnected

(c) Sub-problem 3: Exchanger channel de-
sign.

Absorber
Channels

Plastic

Part/Melt

Cool melt

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber

Channels

Connectors

Channels

Supply coolant

Is_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Absorber
Channels

Exchanger

Channels

Connectors
Channels

Exchange coolantExchange coolant

Is_connected_toIs_connected_to

Is_connected_to

Mold Part

(Core, Cavity)

Is inside

Scenario

Embodiment
Function

Topologic relation

(a) Sub-Problem 1: Absorber channels design (b) Sub-Problem 2: Connectors channels design

(c) Sub-Problem 3: Exchanger channels design

Disconnected
Plastic

Part/Melt

Disconnected

Plastic

Part/Melt

Disconnected

(d) Legend

Figure 5.8: Resulting decomposed problem formulations.

The scenario element Mold Parts can be modeled in different dimensions:
Shape, Fields and Parameter. As Mold Parts are not subject of design and its
shape and parametric representation are fixed, it is chosen to use the representa-
tional dimension Fields.

Physical Domain: Reformulation

For the case of CSIM shown in Figure 5.9, the following primitive elements are
derived:

• Points: encapsulate the Space dimension of the representations. A Point
contains a description about its position (x,y,z). Points are related to the
scenario elements by the physical coherence constraints PCC-1 and PCC-4.
A set of Points indicates the path followed by the channel.

• Segments: encapsulate the Shape dimension. A Segment contains the de-
scriptions diameter (D) and length (L). The physical coherence relation
PCC-2 determines the minimum allowed distance between two points to
avoid break of the mold, while the relation PCC-3 determines the diameter
of the channel as function of the distance between a Point and Mold Part
or Plastic Part.

75

Chapter 5. Managing Complexity I: Information Contents

Channel

Cardinality Segment

Diameter D
Length L

Cardinality C

Point

Position (x,y,z)

Type
Cardinality

Voxels

Plastic Part/

Melt

Voxels

Mold Part

(Core, Cavity)

PCC-1

PCC-4
PCC-2

Is

Is composed of

Is inside of

Disconnected

PCC-3

1

2

3

4

5

6

7

Figure 5.9: Primitives in functional element “Absorber Channel”.

Given that the three functional elements are decomposed into the same prim-
itives, the following notation is used to differentiate among them:

• Absorber channels have primitives Blue Points and Blue segments.

• Connector channels have primitives Green Points and Green segments.

• Exchanger channels have primitives Brown Points and Brown segments.

These six primitive elements define the information contents of the DPs of the
problem. On the other hand, the element Mold Parts is also decomposed into
primitives. Here, the dimension of concern is Fields and, as such, voxel elements
are chosen. Voxels are cubic units and can be used to describe a mold’s shape
and position.

Physical Domain: Separation

For the case of CSIM design, the resulting DM becomes:

Points

Segments
MoldPart
P lasticPart

 =

2 0 5, 6 4, 7

3, 1 0 0 0
0 0 0 0
0 0 0 0

Points
Segments
MoldPart
P lasticPart

 (6)

According to this, Points have to be instantiated firstly and Segments sec-
ondly. Now that the problem has been separated, the combinatorial aspect of
the complexity is tackled. In the case study of CSIM, combinatorial complexity
arises from the uncertainty of how many Channels are required and how they
should be connected. This is managed by predefining a 3D grid of points without
“color” within the voxel mesh. By doing so, periodicity is brought in the system
as suggested in ADT. By setting the distance between Points according to relation

76

5.3 Method 2: ADT based Decomposition

Table 5.3: Logic relations determining the color of Points.

Point ID Logic relation with scenario elements
Blue C1 Surrounded by [(core voxels) OR (cavity voxels)]

AND [product voxels]
Green C2 Surrounded by [(core voxels) OR (cavity voxels)]
Brown C3 Surrounded by [(core voxels) OR (cavity voxels)]

AND [exchanger voxels]
Black C4 Surrounded by [non drillable voxels]

PCC-2, imaginary complexity is also removed from the system, as relation 2 can
be removed from the DM shown in equation 6. In order to integrate the physical
coherence constraints PCC-1 and PCC-4 into DPs, one extra type of Points is
declared, namely, Black Points. Black points define the positions where channels
cannot be placed to avoid mold breakage. In Table 5.3, the logic relations that
determine the colors of Points are presented.

Results

Figure 5.10 shows the results of applying this method. A hierarchical model con-
sisting of three levels of abstraction (Points design, Segment design and Channel
design) is obtained. Each element in the model is considered a DP , while the
topology relations among them represent the syntactic rules determining their
structure. Physical coherence constraints represent semantic rules assuring no
physical inconsistencies occur. The complexity of the system has been reduced
by specifying the ranges of each DP : Points as function of the scenario elements
Plastic Part and Mold Parts, Segments as function of Points, and Channels as
function of Segments. Furthermore, the order of instantiation was determined for
each abstraction level at the hand of its DM.

The representations in Figure 5.10 can now be used for automating the design
of CSIM. Chapter 9 describes the implementation of this method to automate
CSIM design using these representations.

77

Chapter 5. Managing Complexity I: Information Contents

Absorber Channel

Length

Cardinality

Blue Segment

Diameter D
Cardinality C

Blue Point

Position (x,y,z)

Cardinality

Plastic Part/

Melt

Mold Part

(Core, Cavity)

PCC-2

Is composed of

Is composed of

Exchanger Channel

Length

Cardinality

Green Segment
Diameter D

Cardinality C

Green Point
Position (x,y,z)

Cardinality

PCC-2

Is composed of

Is composed of

Connector Channel

Length

Cardinality

Brown Segment
Diameter D

Cardinality C

Brown Point

Position (x,y,z)

Cardinality

PCC-2

Is composed of

Is composed of

C1

C2 C3

Is_connected_to Is_connected_to

Black Point

Position (x,y,z)

Cardinality

C4

Discretization

into voxels

Point
Design

Segment

design

Channel

design

Figure 5.10: Results of decomposing the CSIM design problem.

78

Chapter 6
Managing Complexity II:
Representations

This Chapter presents a framework for representing artifactual routine de-
sign problems according to the structure described in Chapter 4. First, the
four basic building blocks (Elements, ACO-relations, C-relations and H-
relations) are proposed. Later, an example describing how to translate a
routine design problem into this framework is presented.

6.1 Introduction

A great diversity of representation schemes can be found in CDS literature. While
some representations are specific for one domain (e.g. super quadric for shape
design), other representation schemes, like grammars and parametric models, have
proven to be of a more generic character. For example, design grammars have been
successfully used in computational synthesis methods for shapes design (e.g. [42,
51]), product design configurations (e.g. [71]) and conceptual design (e.g. [34]).
However, these representations are specific to the problem formulation model and
its automation approach. In order to be capable of developing methodologies
for complexity management, standard representation are required. The building
blocks should be capable of representing different levels of detail independent
from each others, and supporting the instantiation of elements, parameters and
relations independent from hierarchical dependencies.

Considering these requirements, a framework to represent the structure of
artifactual routine design problems has been developed. The framework is named
Topology Abstraction Representation Diagram (TARD), as the focus is set on the
topology characteristics of design problems. As this thesis concerns computational
design synthesis, software implementation aspects have been considered. The

79

Chapter 6. Managing Complexity II: Representations

framework is founded upon two existing representation models, namely, multi-
level networks and graph grammars. This section describes the generalities of
these models as well as its shortcomings for representing different types of design
problems.

6.1.1 Multi-level Networks

Nested topologies require an approach for separating different levels of design
detail. Johnson et al. [31] does so by presenting a multilevel network for relating
elements in a topology. This network distinguishes parts and its components at
different levels of abstraction. Components at level N are related by an assembly
relation R to one component at level N + 1. By doing so, the component on the
higher level N + 1 can be represented as function of the components on the lower
level N and the assembly relation R, as shown in the example in Figure 6.1. Here,
an arch is represented as function of the blocks b1, b2, b3 and the relation R. This
makes the components of the multilevel network highly dependent across levels
of abstraction, thus in a vertical direction. As a consequence, the components
within a level are not directly related with each other in a horizontal manner.
This multilevel network only uses an implicit assembly relation between the levels
of detail. In order to obtain an explicit relation between detail levels, the assembly
has to be managed autonomously in the lower level, requiring another method for
the establishment of topological relations.

b1
b2

b3

R (assemble)

Level N+1

Level N
Blocks

Arch

<b1,b2,b3;R>

Figure 6.1: Vertical assembly relation in a multilevel network.

6.1.2 Graph Grammars

As described in Chapter 2, grammars make use of rules to produce networks of
elements by either modifying existing graphs or expanding an initial single element
graph. A grammar rule, as shown in Figure 6.2, specifies how one sub-graph can be
replaced by another sub-graph. By applying grammar rules, different components

80

6.2 Theory 1: TARD Model

can be inserted to form a design topology. The example in Figure 6.2 illustrates
a simple transmission system. As shown, rule R1 describes the connection of
element inputshaft and gear1, rule R2 describes the connection of element gear1
with element gear2 and rule R3 describe the connection of the lement gear2
with the element outputshaft. Grammars make use of “horizontal” relations
in opposition to the multilevel network representation, which uses a “vertical”
relation. In other words, grammars describe the relation of elements at one level
of detail, while multilevel networks describe the relation between elements at
different levels of detail. For the case of example in Figure 6.2, the transmission
system is represented explicitly by the components and their connectivity relations
and not by a single implicit assembly relation like in the multilevel network.

R1

Inputshaft Gear1 Gear2 Outputshaft

R2 R3

1 2 1 2 3

R
R R

Grammar rule

Figure 6.2: Example of horizontal grammar representation.

6.2 Theory 1: TARD Model

The Topology Abstraction Representation Diagram, or TARD, integrates explicit
relations to model both the connectedness among elements in one abstraction level
and the inter-dependency of elements at different abstraction levels. By doing so,
characteristics of grammar, parametric and multi-level networks representations
are resembled by a small set of generic building blocks: Elements, C-relations,
H-relations and ACO-Relations. Elements represent individual components of
the design problem, and group the set of parameters used in its description. For
example, in Figure 6.3 the components E1, E2 and E3 represent an engine, a
gear box and a wheel respectively. C-relations represent the connectedness of
the elements in the topology, which is described in Figure 6.3 by the relations
C. H-relations model how a group of C-relations are related to describe the
composition of a higher level element. This group of C-relations, together with
their corresponding Elements is denoted here as abstraction-group. ACO-relations
are used to model analysis relations, physical coherence constraints and objective
functions.

81

Chapter 6. Managing Complexity II: Representations

E3

Wheel

E2

Gear Box

E1

Engine

E6

Gear 3

E5
Gear 2

E4

Gear 1

H

C C

C C

Level 1

Level 2

Horizontal direction

V
e
rt

ic
a

l
d

ir
e

c
ti
o

n

Figure 6.3: Example for the general usage of Elements, C-relation and H-relations on
two levels of detail.

Using these building blocks to represent a problem structure results in a hor-
izontal and vertical connected network, as shown in Figure 6.3. By considering
explicit -instead of implicit- relations, TARD supports the creation of problem so-
lutions at one level of detail topologically independent from other levels of detail.
The last is required for supporting bottom-up and top-down design strategies si-
multaneously. TARD reassembles the design structure presented in Chapter 4, as
shown in Figure 6.4. In this sense, the building blocks in TARD have both a class
representation and an instance representation. The problem class is constructed
at the hand of Elements, C-relations, H-relations and ACO-relations classes. A
problem instance is defined by partiality instantiating these building blocks.

Problem

Class

Problem

Instance

Problem

Solution

Figure 6.4: Design problem structure using TARD.

82

6.2 Theory 1: TARD Model

6.2.1 Base definitions

Cardinality

In order to control the number of instances of each building block, TARD uses
cardinalities. Two types of cardinalities are distinguished: local and global. While
local cardinalities describe the number of instances in a relative fashion (e.g. C-
relation in relation to an Element), global cardinalities model the total number
of instances of a certain element class in the complete design problem.

References

A reference is a pointer to another class or object instance. It is used to define how
one building block is related to another. Relations also use references to element
parameters to define its form. Depending on the direction of the association,
the reference is of the type owned or the type owner. Owner references follow
the hierarchical structure from top to bottom, while owned references do it from
bottom to top. References are required to enable communication among the
building blocks classes and instances.

6.2.2 Building Blocks

Elements, C-relations and H-relations are used at the three levels of problem
structure: problem class, problem instance and problem solution. At the problem
class level, these building blocks describe the blueprint of an artifact. At a problem
instance level, a combination of class and instance descriptions is used, while at
the problem solution, only instances of these building blocks are used. From this
perspective, the problem instance can be seen as a partially instantiated problem
solution. The following subsections present a detailed description of each building
block of TARD.

Elements

An Element represents a class description of a component in a design problem.
For example, the transmission system in Figure 6.3 contains four Element blocks:
inputshaft, gear1, gear2 and outputshaft. Each Element class is described in
TARD by the following information:

• Parameters: Describe the class by modeling its characteristics. At the
problem class, parameters are only declared. Values are attributed either
by setting the requirements at the problem instance level, or by a generation
algorithm to create problem solutions.

• Cardinalities: The total cardinality e describes the amount of Elements
of a type in the design solution, while the local cardinality el describes the
total amount of Elements within one abstraction-group. Cardinality can be

83

Chapter 6. Managing Complexity II: Representations

BA C

Z

C1

i j

C2

i j

l l

Level 1

Level 0

Figure 6.5: Example of bi-level TARD Diagram.

either known or unknown. Depending on whether cardinalities are known
or unknown, the problem exhibits different complexities, as described in
Chapter 5.

• References: owner-reference to a H-relations and owned-reference to a C-
relation.

Elements can be classified according to their absolute position or relative po-
sition in the topology diagram. From an absolute perspective, three types of
Elements are distinguished:

• Zero Elements: Each network formulated by the representation of this
framework has a hierarchical structure topped by a single Element repre-
senting the structure as a whole. In Figure 6.5, the zero level Element is
denoted as Element Z. The cardinality of Zero Elements equals one (1) and
no C-relations are connected to them.

• Abstract Elements: Are those with a subordinate abstraction-group, and
are found between Zero Elements and Base Elements. In Figure 6.5, Z is
both a Zero-element and an abstract element.

• Base Elements: Are those at the bottom of each network path, and do
not have lower abstraction level dependencies. In Figure 6.5, elements A,B
and C are all base elements, as none of them has a lower abstraction-group.

On the other hand, from a relative perspective elements can be classified in
parent or son elements. For example, in Figure 6.5 the element Z is the parent
element of A, B and C; while element B is the son of element Z.

84

6.2 Theory 1: TARD Model

Engine

GearBox

Wheel

S

Engine GearBox WheelC1 C2

(a) 3 Elements connected by two 1-simplices.

Engine

GearBox

Wheel

S

Engine GearBox WheelC C

(b) 3 Elements connected by
one 2-simplex.

Figure 6.6: Connectivity relations.

C-Relations

C-relations are used to determine the connection between two element classes
in an abstraction-group. Having explicit connective relations makes it possible
to assemble sequences of Elements independent of the previous existence of in-
stantiated parent elements. Elements are horizontally related to C-relations by
references, which allows its instantiation in two ways: by instantiating the rela-
tions and later their referenced Elements (a top-down strategy), or by matching
previously instantiated Elements and then instantiate the C-relation accordingly
(a bottom-up strategy). Consider the example shown in Figure 6.3. Here, the
Element engine can exist without the need for an Element wheel or even without
the need for a C-relation C.

Furthermore, C-relations support the generation of topologies by generating
sequences, enabling the application of grammar approaches for design synthesis.
In contrast to the multidimensional representation, the grammar approach with
the rule in Figure 6.6(a) relates two Element classes with each other using a 1-
simplex to describe the relation. By an iterative repetition of the rule, a multitude
of C-relations can be created. TARD only supports the representation of 1-simplex
C-relations, thus, it only relates two elements. Higher dimensional simplices are
indirectly supported by the H-relation, as it it described in Subsection 6.2.2. C-
relations are modeled using the following descriptions:

• Direction: Indicates how one Element is related to other Elements of an-
other class.

• Cardinalities: C-relations have two local cardinalities, namely, cardinality
i and cardinality j. These cardinalities define the number i of instances
of an Element type that can be connected with a number j of instances to
another element. As the framework is decided to suport 1-simplex relations,
i has a constant value of 1. The example shown in Figure 6.7(a) illustrates a
C-relation class C that relates the Element classes A and B with i = 1 and
j = 4. The instanced C-relations in Figure 6.7(b) shows that one instance
of A is connected to four instances of B.

85

Chapter 6. Managing Complexity II: Representations

• References: Owner-reference to an element, owned-reference to a H-relation

• Parametric models: Are rules concerning the constitution of the con-
nected Element instances. These rules, in the form of equation, relate pa-
rameters of the two Element classes involved in the relation. Figure 6.8
shows an example, where the parameters defined within the two Element
classes are related to each other by a set of rules in the C-relation. Accord-
ingly, the instantiation process of Element 2 has to consider the parametric
relations defined with respect to the prior Element.

Note: It is important to notice that although C connects one Element A with
four Elements B, it does not connect the instances of B (b1,b2,b3,b4) among each
others. So, even if C-relations relate more than two Element instances, as in the
example, they do not model multidimensional simpleces.

A B

C

i=1 j=4

a1

b1

b2

b3

b4

c1

instanceclass
(a) C-relation class connected to two El-
ement classes.

A B

C

i=1 j=4

a1

b1

b2

b3

b4

c1

class

(b) C-relation instance connected to five
Element instances.

Figure 6.7: C-relations: class and instance.

Element 1

C-relation

Element 2
parameters:

p1
p2

p3
.
.

parameters:

pA
pB

pC
.
.

rules:

p1 < 2 pA
P2 = pB

P3 >= pC
2

.

.

Figure 6.8: Parametric rules in the C-relation relate the parameters of the connected
Elements.

86

6.2 Theory 1: TARD Model

H-relations

H-relations connect the model in a vertical direction, thus they relate two lev-
els of detail with each other. More precisely, a H-relation connects an abstract
Element in a level N with an abstraction-group on a more detailed level N + 1.
Abstraction-groups describe topology compositions on an abstract Element, and
are analoguos to the assembly relation of the multilayer network [28]. However,
while assembly relations in the multilayer network relates a set of components
to a single component on a higher level, the H-relation relates the C-relations of
abstraction-group at level N with its parental Element on level N − 1.

A topological diagram according to TARD is composed of elements connected
by relations. These relations represent the possible topological dependencies of
a design problem. By referencing H-relation to C-relations instead of directly to
Elements, the combination of the H-relations and C-relations establishes a self
contained definition of the structure of each abstraction-group. By doing so, Ele-
ments and topology relations can be uncoupled, and the description provided by
the relations yields a valid description of the abstraction-group, even without any
knowledge about the actual Element instances. On the other hand, this obliges
a problem solution to represent both the Elements and their connection in an
abstraction-group. The C-relations and H-relations create an explicitly formu-
lated skeleton in which, by the means of generation or recognition algorithms,
Element instances are created.

A H-relations contains the following information:

• Cardinalities: Each reference from an H-relation class to a C-relation class
is associated with a total cardinality lc. This cardinality models the amount
of instances of C-relations in an abstraction-group. In the example shown
in Figure 6.9, a C-relation C connects one Element A with one Element B.
In order to connect 3 element instances A with 3 element instances of B,
three C-relations C are required, which results in l = 3.

• Sequence: The second type of information stored within the H-relation is
called sequence. A sequence is a list of successive relations that in essence
resembles a plan for the instantiation order.

• Constraining rules: Constrained combination of C-relations by specify-
ing required combinations or not allowed combinations. Constraining rules
are formulated in the form of sequence fragments. This type of rules are
formulated using references to both C-relations and Elements classes and
instances and logic operators.

• Reference: Owner-reference to C-relations, owned-reference to an Ele-
ment.

It is interesting to note that the sequence and constraining rules indicate the
managing role the H-relation has over an abstraction-group. As H-relations are

87

Chapter 6. Managing Complexity II: Representations

A B

C

H
lc=3

i=1 j=1

P

e=3 e=3

a1 b1

c1

a2 b2

c2

a3 b3

c3

p

h

(a) Class representation with lC = 3.

A B

C

H
lc=3

i=1 j=1

P

e=3 e=3

a1 b1

c1

a2 b2

c2

a3 b3

c3

p

h

(b) Instance representation with C-
relation instances.

Figure 6.9: H-relations: class and instance.

always related to parental Element on a one to one basis, they are coupled to
cardinalities. According to this, an Element instance can only have one type of
H-relation in the topology domain. However, multiple domains of an element can
be represented by different types of H-relations.

ACO-Relations

ACO relations represent the non-topology relations of a design problem formula-
tion: Analysis relations, physical Coherence constraints and Objective functions.
ACO-relations have the following type of information:

• References: owner references are used to parameters declared in Elements,
C-relations and H-rations. In this context, cardinalities are also regarded
as parameters.

• Parameters: model the parameters that not attributed to other elements.
For example, an the weight parameters of an objective function.

• Model: The model uses references, parameters and operators to describe
the nature of the relation.

6.2.3 Types of abstraction-groups

Creating solutions to problem instances consists in instantiating C-relations and
Elements in abstraction-groups, which results in a collection of m elements con-
nected by successive m − 1 C-relations. This collection is regarded as sequence,
and determines the time dependency of a problem. Abstraction-groups with one

88

6.2 Theory 1: TARD Model

possible sequence, as for example in Figure 6.10(a), are regarded as simple. On
the other hand, abstraction-groups allowing multiple distinctive sequences are re-
garded as complex, as for example the abstraction-group shown in Figure 6.10(b).
As consequence, the degree of freedom of a simple abstraction-group only depends
on the amount of (unknown) cardinalities, while in a complex one it depends on
both the cardinalities and number of possible sequences. The time dependency
of this type of problems draws from the fact that the number of elements and
C-relations changes as a solution is created, and its final form in unkown until a
solution is fully defined. Therefore, an abstractiogroup is complex if: the num-
ber of C-relations n is equal or larger than the number of elements m within the
abstraction-group, thus n ≥ m.

The example illustrated in Figure 6.10(b) shows a complex abstractiogroup
with 4 elements and 8 C-relations. A back coupling occurs at the relations C3
and C5, which create a loop on a single element. This results in a line-up of
the multiple instances of the same element. It has to be pointed out that the
addition of one not back coupling relations does not necessarily enlarges the set
of sequences. However, the introduction of even one single back coupling relation
adds theoretically an infinite amount of sequences to the solution set, since it can
be repeated an infinite amount of times. As a result, the example has an infinite
set of solutions. Accordingly, the simple group in Figure 6.10(a) has one possible
sequences.

E1 E2 E3

C1

C3

C4

C2

C8

C6

C7

C5 E4E1 E2 E3 E4

C1 C2 C3

H
<l1,l2,l3>

H
<l1,l2,l3,l4,l5,l6,l7,l8>

(a) Simple abstraction-group.

E1 E2 E3

C1

C3

C4

C2

C8

C6

C7

C5 E4E1 E2 E3 E4

C1 C2 C3

H
<l1,l2,l3>

H
<l1,l2,l3,l4,l5,l6,l7,l8>

(b) Complex abstraction-group.

Figure 6.10: Simple and complex abstraction-groups.

89

Chapter 6. Managing Complexity II: Representations

6.3 Example: Belt System Design

The following example illustrates the concepts discussed above. Figure 6.11 shows
a sketch of a conceptual belt system. The embodiment of the belt system includes
an input shaft (IS), an input pulley (IP), a belt (B), an output pulley (OP) and
an output shaft (OS). The components within the embodiment are arranged in
order to serve the main functionality of the system, which is transferring force and
momentum. This type of problem can be regarded as a topologic design problem,
as it concerns the configuration of different types of components. In other words,
the topology has to make sense from a functional point of view. This implies
that the C-relations are established within the functional domain of transferring
energy.

Figure 6.11(b) presents a straightforward topological diagram on the basis
of the framework. It is composed of just one level containing all components
from Figure 6.11(b) translated into Elements. These Elements are related to each
other by the means of four C-relations (C1,C2,C3,C4) in such a manner that it
resembles the path of the energy flow from input to output. Due to the fact that
each component only appears once, all C-relations are one by one relations, with
i and j equal to one. A further consequence is that the cardinalities l contained
within the H-relation, which is connected to the zero level Element BS (Belt
system), are equal to one as well.

inputshaft

inputpulley

outputshaft

belt

outputpulley

(a) A conceptual single belt transmission.

inputshaft

inputpulley

outputpulley

outputshaft

belt

IPIS B

BS

C1

1 1

C2

1 1

OP OS

C3

1 1

C4

1 1

H0

1 1 1 1

(b) Topological network of the belt system with a single level of detail.

Figure 6.11: Example of representation of a pulley transmission system.

The values of the cardinalities are fixed due to the fact that the artifacts’

90

6.3 Example: Belt System Design

topology is known. However, the structure of the diagram can be alternated by
reorganizing the base Elements into different abstraction-groups. The topology
diagram shown in Figure 6.12(a) is constituted by the same physical elements
as the structure shown in Figure 6.11(b). However, their representation is done
differently, given that the structure in Figure 6.12(b) contains a new Element BD
(belt drive), which is composed by the Elements IP ,B and OP in a lower level
abstraction-group. Although this model looks complexer than the previous one,
it allows separating the problem in two independent chunks. By doing so, level
1 is concerned with the search of adequate transmission ratios, while level 2 is
concerned with the search of parameter values that satisfy the ratios specified in
level 1.

IP B OP

BDIS OS

BS

C1

1 1

C4

1 1

C2

1 1

C3

1 1

H0
1 1

1 1

H1

IP B OP

BDIS OS

BS

C1

1 1

C4

i j

C2

i j

C3

i j

H0
1 l

l l

H1

(a) All cardinalities fixed: structure fully de-
fined.

IP B OP

BDIS OS

BS

C1

1 1

C4

1 1

C2

1 1

C3

1 1

H0
1 1

1 1

H1

IP B OP

BDIS OS

BS

C1

1 1

C4

i j

C2

i j

C3

i j

H0
1 l

l l

H1

(b) Most cardinalities unknown: structure
undefined.

Figure 6.12: Topological network of the belt system with two levels of detail.

The TARD model shown in Figure 6.12(a) is topologically fully defined, as its
cardinalities are known, and it is limited to one possible sequence of C-relations.
On the other hand, the TARD model shown in Figure 6.12(b) is topologically
under defined, given that some of its cardinalities are unknown. Depending on
the number of unknown cardinalities and its distribution in the TARD network,
there are different possible configuration of the solutions. For example, the belt
system in Figure 6.11(a) is one alternative. Another possible solution for the
under defined situation is the design shown in Figure 6.13, having two belts and
output pulleys. This is simply achieved by setting the cardinalities i and j of C2
to 1 and 2 respectively, introducing a parallel structure, while the cardinalities
at C3 are kept to one. It should be pointed out, that due to the parallelism all
successive objects in the abstraction-group have parallel instances as well. This
is kept consistent by setting the cardinality l for C3 in H1 equal to 2.

91

Chapter 6. Managing Complexity II: Representations

inputshaft

inputpulley

belt

belt

outputpulley

outputshaft

outputpulley

Figure 6.13: A conceptual double belt transmission: one input, two outputs.

6.3.1 Proximity Relation

One special case of ACO-relations is the proximity relation. Although abstraction-
group are in principle treated independently, Elements between different abstraction−
groups might be physically connected too. Usually, this relationship exist between
the first and last Elements of an abstraction-group. These elements are regarded
in TARD as boundary Elements. Boundary Elements might be physically con-
nected to components in Elements in other neighboring abstraction− groups.

Consider the example in Figure 6.11. Here, the transmission system consists
of physically connected parts. Figure 6.12 shows that the Elements of the belt
system can be divided into two abstraction-groups. Although the output pulley
OP and the outputshaft OS are physically connected, they are allocated into
different abstraction-group. If there are two instances of Element OP , there have
to be two instances of OS as well and vice versa. The resulting physical model
is shown in Figure 6.13. The same is true for the Elements IS and IP , however
the cardinalities remain 1 in this case. The correlation between those Elements
is called proximity relation. In the example, the local cardinalities of IP and OP
are set equal to the local cardinalities of IS and OS respectively, resulting in the
proximity relations: e < IP >= e < IS > and e < OP >= e < OS >, with
e1
e2

= p, where p is called proximity constraint. The choice of which Elements to
bind by a proximity relation is highly dependent on the problem and its boundary
conditions.

92

Chapter 7
Managing Complexity III:
Manipulating Elements

Two techniques to manage problem instance complexity are proposed in this
Chapter. One technique manages complexity arising from requirements dis-
tribution, while a second technique manages complexity arising from knowl-
edge distribution.

7.1 Introduction

Solving design problem instances can be regarded as a two folded process. Firstly,
depending on the distribution of known and unknown entities, a design strategy is
developed. Secondly, specialized algorithms instantiate the elements, parameters
and relations such that the goal of the design is achieved. While the former
process aims at determining the solving order of a problem instance, the latter
is concerned with the attribution of values that meet the design goals of the
problem. Under the model of complexity presented in Chapter 4, complexity in
problem instances appears from uncertainties in defining solving strategies rather
than the process of attributing values to design parameters. Therefore, the result
of managing complexity of problem instances are methods determining the order
(which elements are instantiated when) and directions (e.g. top-down, bottom-up,
combinations) in which a design solution can be generated.

This chapter proposes two approaches for managing the complexity of prob-
lem instances from the viewpoint of element manipulations. Both approaches
are based on the TARD framework. The first approach is a model that relates
the cardinalities of the elements with algebraic equations. By doing so, con-
straint solving algorithms can be implemented to determine the order in which
abstraction-groups have to be solved. The second determines the generation ap-

93

Chapter 7. Managing Complexity III: Manipulating Elements

proach as a function of the distribution of design requirements. This method de-
termines which strategies to use for solving an abstraction-group. In other words,
the first is concerned with the relation among different abstraction-groups, while
the second is concerned with the internal process within an abstraction-group.

Section 7.4 demonstrates the use of both methods in the design of the optical
path of an XRF device. Appendix A presents how these methods have been used
for an equation generation tool.

7.2 Theory 2: Topology System of Equations

The Topology System of Equations (ToSE) is a set of algebraic equations that link
the cardinalities attributed to the building blocks in TARD: e,el, i, j, l. These
equations can be seen as the bounds keeping Elements, C-relations and H-relations
of a design problem tied together. ToSE enables managing both combinatorial and
imaginary complexity of problem instances. Combinatorial complexity is managed
by incorporating relations among cardinalities that do not change as the design
process progresses (not function of time). Imaginary complexity management is
achieved by constituting a set of equation that can be used to determine the
type of problem: under constrained, over constrained or system of equation. By
applying, for example, a constrain solving algorithm, the topologic problem can
be solved. ToSE consists of two types of equations, namely, balance equations
and vertical equations. While the former describe the relations in one abstraction-
group, the latter express the relation among all the abstraction-groups. ToSE also
allows determining how changes in one abstraction-group affect other abstraction-
groups.

7.2.1 Balance Equations

The example in Figure 7.1(a) shows a simple TARD model composed of one
abstract element and one abstraction-group. At the top, the parent element class
P at level N is related to the C-relation C in the subgroup at level N + 1 by the
means of the H-relation H. The element classes A and B are connected by C.
Calculating the local cardinalities of A and B is in this case simply done by the
following equations:

eA loc = ic · lc (7.1)

eB loc = jc · lc (7.2)

Where i and j are the cardinalities in the C-relation and l denotes the cardinality
of C in H. This equation states that the amount of instances of element A is the

94

7.2 Theory 2: Topology System of Equations

A B

C

H <lc>

i j

P

eA eB

ep

N+1
eA_loc eB_loc

N

(a) Simple abstraction-group.

B

P

A C

C1 C3

C2

H <lC1,lC2,lC3>

N+1

N

(b) Complex abstraction-group.

Figure 7.1: Two abstraction-groups.

product of the amount of instances of relation C by the amount of instances of
element A that have to be connected to a single relation C.

Figure 7.1(b) shows a TARD model that introduces a third element and two
C-relations to the previous one. Here, equations 7.1 and 7.2 are no longer valid.
Given that there are three relations interfering with this element, another ap-
proach is required for calculating the local catrdinalities elocal. This can be done
by classifying C-relations in two types: incoming CI and outgoing CO. Using
this definition, the cardinality of an element el can be calculated using either its
incoming C-relations or using its outgoing C-relations as follows:

elocal =
∑

jCI · lCI (7.3)

elocal =
∑

iCO · lCO (7.4)

Given that the cardinalities of the incoming and outgoing relation have to be
equal in order to have consistency, both relations can be integrated to result in
the equation: ∑

jCIE
· lCIE

=
∑

iCOE
· lCOE

(7.5)

where CIE and COE being the C-relations connected to element E. This equa-
tion is regarded as the balance equation of an element. Balance equations can
be assembled for each of the elements in a TARD model.

Consider now the example of the abstraction-group shown in Figure 7.2. The
balance equations for element E2 is expressed by equation 7.6 and for element
E3 by equation 7.7. However, elements E1 and E4 are not related to any in-
coming or outgoing relations. This is because of the fact that boundary elements
are connected to other element in other abstraction-group. Therefore, proximity

95

Chapter 7. Managing Complexity III: Manipulating Elements

E1 E2 E3

C1

C3

C4

C2

C8

C6

C7

C5 E4E1 E2 E3 E4

C1 C2 C3

H
<l1,l2,l3>

H

<l1,l2,l3,l4,l5,l6,l7,l8>

Figure 7.2: Example of complex abstraction group.

equations are used to formulate the balance equation of boundary elements. In
the case of the first element of an abstraction-group, the contribution of the prox-
imity equation has to be added to the side of the incoming relations. In the case
it is the last element, the proximity equation is added to the side of the outgoing
relation. Following these remarks, the balance equations for the elements E1 and
E4 are equation 7.8 and equation 7.9, respectively.

jC1 · lC1 + jC3 · lC3 + jC6 · lC6 = iC3 · lC3 + iC4 · lC4 + iC8 · lC8 (7.6)

jC2 · lC2 + jC4 · lC4 + jC5 · lC5 = iC5 · lC5 + iC6 · lC6 + iC7 · lC7 (7.7)

eprox
E1 = iC1 · lC1 + iC2 · lC2 (7.8)

jC7 · lC7 + jC8 · lC8 = eprox
E4 (7.9)

Where eprox
E denotes the proximity relation of element E

7.2.2 Vertical Equations

Vertical equations are used to relate cardinalities across abstractiongroups in a
TARD model. To explain the concept of vertical equations, consider the TARD
model shown in Figure 7.1(b). Here, for each instance of the element P exists
one corresponding instance of abstraction-group containing instances of A and B.

96

7.2 Theory 2: Topology System of Equations

In this case, the global cardinalities of the elements A and B keep track of the
amount of element instances in all abstraction-groups, which can be expressed by
the following expression:

eB = eP ·
∑

jCI · lCI (7.10)

eB = eP ·
∑

jCO · lCO (7.11)

The equation for calculating the global cardinality of an element is based on
level N and level N + 1. The equation for element P (ep) can be derived in the
same fashion, relating the to the level N − 1. By following this pattern until the
zero-element (level N−N), the equations connect all related elements successively
across from level N+1 until the zero level into a single relationship. The resulting
equation, is regarded as the elements vertical equation. The vertical equation
states that a change in the value of an element’s cardinality on a high level has a
direct effect on the cardinality of an element on a lower level and vice versa. A
general expression of a vertical equation can be written as follows:

eEN
=

m=1∏
m=N

∑[
(i, j)CI;O

· lCI;O

]
m

(7.12)

Where eEN
denotes the global cardinality of element Eon level N . Either

incoming or outgoing C-relations can be used.
Figure 7.3 shows an example of a TARD model with two levels. The lines indicate
the how the cardinalities of different elements are related by vertical equations.
In this example, two alternative but equally valid vertical equations for element
F are:

eF =
(
jCE−F ·lCEF

)
·
(
jCA−B ·lCAB

)
(7.13)

eF =
(
iCF−G·lCFG

)
·
(
iCB−C ·lCBC

)
(7.14)

The path used for formulating Equation 7.13 is indicated by the dotted line
in Figure 7.3, while the path used for equation 7.14 is indicated by dashed line.
Two more valid equations can be formulated:

eF =
(
jCE−F ·lCEF

)
·
(
jCB−C ·lCBC

)
(7.15)

eF =
(
iCH−I ·lCHI

)
·
(
iCA−B ·lCAB

)
(7.16)

In contrast, element H only has one possible vertical equation:

eH =
(
iCH−I ·lCHI

)
·
(
jCC−D·lCCD

)
(7.17)

97

Chapter 7. Managing Complexity III: Manipulating Elements

F

BN=1

E G

C DA

0

N=2

N=0

IH

Figure 7.3: Relational paths of vertical equations in a two level TARD model.

As it can be seen, the number of valid vertical equations of a given element
depends on the incoming and outgoing C-relations in the path. The purpose of the
vertical equations is to relate the model mathematically across the levels of detail.
In order to take all elements into account by vertical equations, it is sufficient to
formulate one vertical equation for each base element in a TARD diagram. For
the example in Figure 7.3 this means that abstract elements B and D are already
covered by the equations of the elements E, F , G, H and I. In this example, 7
vertical equations are sufficient to relate all abstraction-groups.

7.3 Method 4: The Local Grammar Method

As described in Chapter 4, a problem instance is the result of setting embodiment,
scenario and performance requirements. Requirements are set by instantiating el-
ements, relations, or parameters of the problem class. Depending on which entities
are instantiated in one abstraction-group, two different types of complexity arise:

• Time-dependent periodic complexity : is the uncertainty of knowing
how many and in which order the C-relations are instantiated to produce
a problem solution. This type of complexity in attributed in TARD to
complex abstraction-groups, described in Subsection 6.2.3.

• Time-independent imaginary complexity : is the uncertainty of know-
ing if solutions are created bottom-up, top-down manner or as combinations
of both. In TARD, this type of complexity is found in problems where re-

98

7.3 Method 4: The Local Grammar Method

E1 E2

C1

E1

E2 E3

C4

E2

E1 E3

C2

rule 1 rule 2

E2 E4

C8

E2 C3

rule 3

E3 E2

C6

E3 E3 E4

C7

E3 C5

Figure 7.4: Local grammar rules for the elements in Figure 6.10(b).

quirements are set by instantiating elements at different levels of abstrac-
tion. This type of complexity is independent of the type of abstraction-group
(complex or simple).

The local grammar method aims at managing these complexities by presenting
a formalism for grammar generation that depends on the allocation of the design
requirements.

7.3.1 Grammar Rules and their Application

In order to apply grammar theory in TARD models, a C-relation class relating
two element classes is considered as a grammar rule. The advantage of C-relations
is that it can represent various grammar rules at once: IC instantiated and OC
not instantiated, IC and OC not instantiated, and OC-instantiated and IC in-
stantiated. As the instantiation of C-relations depend on the direct neighbors of
an element, this procedure is referred to as the local grammar method.

Figure 7.4 shows the local rules of the elements E1, E2 and E3 in Figure 7.2.
Generating a network of components starts by applying one of the two rules
available for element E1. If rule 2 is chosen, an instance of C2 that connects
element E1 to E3 is created. Done this, the algorithm continues by checking
which rules are available to connect element E3 and then selecting one rule. This
process continues iteratively, until an end element (here E4) or end criterion is
reached, with a sequence as a result. Specialized algorithms can be used to drive
the search process.

7.3.2 Adding Complementary Rules

Complimentary rules can be defined within an H-relation to constrain the gen-
eration of sequences. These rules are used to model design rules and reduce the

99

Chapter 7. Managing Complexity III: Manipulating Elements

solution space of a problem. For example, for the case of CSIM design, com-
plementary rules can be used to model how expert designers alternate between
different types of cooling channels when constructing cooling circuits.

When a sequence fragment matches an already made sub-sequence, the com-
plementary rule is applied. This is particularly useful to constrain the generation
of known infeasible combinations and the infinite usage of rules. For example, a
repetition of a certain element can be constrained in this way, by defining a rule,
stating that after a C-relation has been used for a given number of times, it has
to be excluded from the following set of local grammar rules. Figure 7.5 shows
such a rule, where C2 is excluded from the local grammar iteration after using
it twice. As a result, three instances of E are chained up and C3 remains as the
only choice for the next iteration.

E

C1 C3C2

C2-C2 exclude C2

Additional rule

(a)

E

C1 C3C2

C2-C2 exclude C2

Additional rule

(b)

Figure 7.5: Example of an adding a grammar rule in the local grammar method.

7.3.3 Guiding the Search Process

A sequence has been described as one possible combination of the elements in an
abstraction-group. This combination is stored in the form of a list of successive
C-relations (a string), which starts and finishes with an C-relations. In order to
manage the generation of sequences, a factor kC associated to each C-relation C
instance in the string has been defined. This factor denotes the amount of relation
instances at a given position in the sequence. Thus, the total amount of instances
lC of the C-relation in a sequence C is given by the sum of its factors kC . By
relating both terms, an expression termed as sequence equation is derived to aid
the management of complex abstraction-groups:

lc =
∑

Kc (7.18)

In a complex abstraction-group, algorithms iteratively connect elements using
C-relations. While this is done, a sequence is generated and expanded, which
in turn is used as guidance by the complementary rules. By adding each of the
factors kC , a comparison can be made to the sequence equations. This enables
making predictions over which relation to choose in the next iteration step or,
if no alternative can be found, to stop. Thus, the sequence equation provides a
guidance to the assembly processes in order to end up with a consistent sequence.

100

7.3 Method 4: The Local Grammar Method

7.3.4 Creation vs. recognition

Within one abstraction-group, the concepts of top-down and bottom-up are re-
lated to mechanisms used in the instantiation of Elements and C-relations . In
top-down approaches, instantiated upper layers determine the creation of the
lower level. For example, an instantiated C-relation determines the instantiation
of an element. In a bottom-up approach occurs the opposite: instantiated lower
layers are used to recognize upper non instantiated levels. For example, recog-
nize if two instantiated elements can be related by one of the C-relations in the
abstraction-group. Determining which of these processes -creation or recognition-
is to be applied is a function of which elements and relation have been previously
instantiated. Its instantiation is the consequence of how the requirements are
distributed in the problem class.

The left side of Figure 7.6 shows an example of an abstraction-group described
by the element classes A, B and C, while the right side shows a pool of element
instances a, b and c. The number of instances of each type in the pool is rep-
resented by Xa, Xb and Xc respectively. Furthermore, the amount of instances
required in a solution is denoted by the element cardinalities. The number of
element instances that result from a recognition process or a creation process is
denoted as fx and fg, respectively. Element cardinalities that exclusively result
from a generation process are given by e = fg and those resulting from recognition
are given by e = fx. In order to determine which approach should be used, the
following relations have been determined:

• System type 1: A creation mechanism is used, as no elements have been
instantiated yet. It has the following characteristics:

x = 0, e = f(g)

• System type 2: Instances are only created for element classes that have
no existing instances. Recognition is used to determine how to connected
existing instances. It has the following characteristics:

x > 0, x < e, e = f(g)

• System type 3: Instances are only created for element classes that have no
existing instances. C-relations are recognized for instantiated elements, and
created for non instantiated elements. It has the following characteristics:

x > 0, x < e, e = f(g) + f(x)

• System type 4: C-relations are only recognized. It has the following char-
acteristics:

x > 0, X = e, e = f(x)

101

Chapter 7. Managing Complexity III: Manipulating Elements

B C

C2

A

C1

P a

a a

a

a
b

b

b

b

c
c

a

a

Problem InstanceProblem Class

Xa=amount of instances of type A

Xb= “ B

Xc= “ C

eA=element cardinality of element A

eB= “ B

eC= “ C

Figure 7.6: Class and instance representations of an abstraction-group.

7.4 Example: XRF Optical Path Design

This example deals with the design of an optical chamber of an x-ray fluorescence
spectrometer (XRF spectrometer), described in [57]. An XRF spectrometer is an
instrument capable of determining the chemical composition of material samples.
This is done by radiating a sample with a high-energy x-ray. The radiation causes
the sample to expel photons which are absorbed by an energy dispersive detector.
By analyzing the wave lengths of the energy absorbed by the detector, different
material compositions can be identified. The arrangement of the components in
the optical chamber of an XRF spectrometer are shown in Figure 7.7, consisting
of: the x-ray tube, the sample, the detector and some diaphragms.

7.4.1 TARD Model

The function of the device is primarily determined by the path of the radiation
from the x-ray tube to the detector. Therefore, the components in the TARD
are arranged according to the path followed by the beam, as this one determines
the flow of energy in the artifact. For this example, components like the cas-
ing or electrical circuits are not taken into account, since they are allocated in
different functional domains. The five base element classes are: X-ray tube, di-
aphragm type 1, sample, diaphragm type 2 and detector. As consequence, only
one abstraction-group is defined. The C-relations are formalized according to
the fashion in which the element functions act upon each others (as described
in Subsection 5.3.1). The H-relation relates the group of C-relations to the zero
level element “optical chamber”. All proximity relations equal one. The resulting

102

7.4 Example: XRF Optical Path Design

x-ray tube

diaphragm

detector

sample

Figure 7.7: Schematic of the optical path design of an XRF spectrometer.

TARD model is shown in Figure 7.8. This model represents the problem class of
the problem.

X-ray tube
Diaphragm

type 1
Sample

C1 C3

Optical

chamber

Diaphragm

type 2
Detector

C4 C6

C2 C5

H : <lC1,lC2,lC3,lC4,lC5,lC6>

1 1 1 1 1 1 1 1

11 11

Figure 7.8: TARD model of XRF optical path design.

7.4.2 Assembling ToSE

To construct the problem instance, requirements are set by specifying which el-
ements are instantiated and which cardinalities are known. The global element
cardinalities of the x-ray tube, the sample and the detector are set equal to one
(1), given that only one of each component is used in the optical chamber. Ad-

103

Chapter 7. Managing Complexity III: Manipulating Elements

ditionally, as each component is only related to one other component, the values
of the cardinalities i and j of all C-relation equals one. At the hand of the in-
formation gathered in the diagram, the vertical and balance equations are now
formulated. Given that all elements are base elements, the ToSE of this problem
consists of 5 vertical and 5 balance equations.
The vertical equations are:

etube = [iC1 · lC1] · e0 =⇒ 1 = [1 · lC1] · 1 =⇒ lC1 = 1

edia1 = [jC1 · lC1 + jC2 · lC2] · e0 =⇒ edia1 = [1 · 1 + 1 · lc2] · 1 =⇒ edia1 = 1 + lC2

esample = [jC3 · lC3] · e0 =⇒ 1 = [1 · lC3] · 1 =⇒ lC3 = 1

edia2 = [jC4 · lC4 + jC5 · lC5] · e0 =⇒ edia2 = [1 · 1 + 1 · lc5] · 1 =⇒ edia2 = 1 + lC5

edetector = [jC6 · lC6] · e0 =⇒ 1 = [1 · lC6] · 1 =⇒ lC6 = 1

The balance equations are:

eprox
tube = iC1 · lC1 =⇒ 1 = 1 · lC1 =⇒ lC1 = 1

jC1 · lC1 + jC2 · lC2 = iC2 · lC2 + iC3 · lC3 =⇒ lC2 = lC2

jC3 · lC3 = iC4 · lC4 =⇒ 1 = 1

jC4 · lC4 + jC5 · lC5 = iC5 · lC5 + iC6 · lC6 =⇒ lC5 = lC5

eprox
detector = jC6 · lC6 =⇒ 1 = 1 · lC6 =⇒ lC6 = 1

In this example, the balance equations cannot be used to solve implicit car-
dinalities. However, they confirm the consistency of the model. There are two
unknown cardinalities values subject to design.

104

7.4 Example: XRF Optical Path Design

7.4.3 Generating Sequences

In this example, the recursive relations C2 and C5 can be repeated an arbitrary
amount of times in the process of generating a sequence. By defining an additional
grammar rule in the H-relation, the number of C-relations can be constrained. For
example, if the maximum number of diaphragms type 1 is considered to be three,
a maximum of two C2 can be used. Figure 7.9 shows two complementary rules,
one regarding the C-relation C2 and another regarding the C-relation C5.

Sequence fragment

C2-C2 C2

C5-C5 C5

exclude

1.

2.

Figure 7.9: Complementary grammar rule in XRF design.

In this example, no instances are provided as requirements in the problem in-
stance. Therefore, it is considered to be a type 1 problem (creation, as described in
Subsection 7.3.4). The problem is solved by applying the local grammar method.
Figure 7.10 shows an example of the steps followed for generating a possible
sequence. The figure shows which are the possible rules to use, and which rules
where selected, for each generation step. Which rule to select should be performed
by a decision making algorithm. The latter being either a simple random selec-
tion algorithm or a sophisticated algorithm, like for example genetic algorithm.
In either case, the sequence is expanded at each iteration step until the process
reaches the last element or an end criteria based on the design performances.

The resulting sequence for the abstraction-group determines the remaining two
degrees of freedom by adding two sequence equations to the system of equations,
one for C2 and one for C5:

lC2 =
∑

kC2 = 1 + 1 = 2

lC5 =
∑

kC5 = 0

By substituting these equations in the vertical equations, the cardinalities can
be calculated:

edia1 = 1 + lC2 = 1 + 2 = 3

edia2 = 1 + lC5 = 1 + 0 = 1

105

Chapter 7. Managing Complexity III: Manipulating Elements

Current element Available Grammar rules Selected rules

X-ray tube

Step

1 X-ray tube
Diaphragm

Type 1

C1

C1

Diaphragm

Type 1
2 Diaphragm

Type 1

Diaphragm

Type 1

C2

C1-C2
Diaphragm

Type 1
Sample

C3

Diaphragm

Type 1
3 Diaphragm

Type 1

Diaphragm

Type 1

C2

C1-C2-C2
Diaphragm

Type 1
Sample

C3

Diaphragm

Type 1
4 Diaphragm

Type 1

Diaphragm

Type 1

C2

C1-C2-C2-C3
Diaphragm

Type 1
Sample

C3

Sample5 Sample
Diaphragm

Type 2

C4

C1-C2-C2-C3-C4

Diaphragm

Type 2
6 Diaphragm

Type 2

Diaphragm

Type 2

C5

C1-C2-C2-C3-C4-C6Diaphragm

Type 2
Detector

C6

Detector7 finish C1-C2-C2-C3-C4-C6

Figure 7.10: Example generation of a sequence for the XRF optical Path design.

106

Chapter 8
Managing Complexity IV:
Manipulating Parameters

This chapter presents a method for determining appropriate solving orders
of networks of parameters in problem instances. In terms of ADT, the
algorithm determines the order in which the DM of a problem instance can
be solved.

8.1 Introduction

As it was described in Chapter 7, time-independent imaginary complexity in prob-
lem instances originates from uncertainties in knowing the order in which DPs can
be solved. When the problem has many DPs, choosing a solving path at the hand
of the problem’s DM is not straight forward. While Chapter 7 described methods
for determining how to instantiate elements, this chapter focuses on parameters
related by analysis, physical coherence constrains, and knowledge rules relations.
These relations can be explicitly written as mathematical models, but can also
be graphically represented using knowledge graphs, as proposed by [57]. In this
chapter, these directed graphs are used to represent the network of parameters
and relations, and explain the basis of the algorithm.

8.1.1 Knowledge Graphs (KG)

Knowledge Graphs represent the network of deterministic knowledge and the pos-
sible paths through the network to resolve all parameters and find a solution.
Knowledge graphs (KG) consist of nodes and directed edges. Nodes represent
parameters and the directed edges describe the relations among each parameter.
The directions of the edges are pointed toward the parameter to resolve. For
example, if node D has N ingoing edges, the parameter represented by node D

107

Chapter 8. Managing Complexity IV: Manipulating Parameters

2 2

2

1 1

1

dwire

w

D

Lc

n

Figure 8.1: Knowledge graph of equation 8.1 and equation 8.2.

requires N other parameters to be known in order to resolve it. The knowledge
graphs edges are labeled according to the relations to which they belong. An
example of such a knowledge graph is shown in Figure 8.1. This graph represents
equation 8.1 and equation 8.2, used in the design of a compression spring. The
first equation describes the winding ratio w as a fraction of the spring diame-
ter D and the wire diameter dwire. The second describes the maximum spring
compression Lc as function of the number of coils n and the wire diameter dwire.

w =
D

dwire
(8.1)

Lc = n · dwire (8.2)

Node w has two edges directed toward it, meaning that its value can be re-
solved if the values of D and dwire are known. As shown in Figure 8.1, the
parameter value of dwire has no edges toward it. This means dwire cannot be
resolved with this equation. The reason is that the allowed values of dwire are
discontinuous (specified by a DIN standard), and a calculated value from equa-
tion (1) is not guaranteed to be exactly a DIN value. Therefore, dwire has to be
resolved by another rule before equation (1) can be used to resolve either w or
Lc.

8.2 Method 5: KGM Solving Algorithm

The KGM algorithm aims at determining orders in which parameters related by
ACO-relations can be solved. It does so at the hand of two complexity measures
that can be calculated for each of the parameters in the problem, namely, the
effort E and the influence Inf. The effort measures the number of parameters
that have to be known in order to resolve a parameter with a certain equation.
The influence measures the number of parameter that can be solved by solving this
parameter. Furthermore, the algorithm is also based on four states a parameter
can have: unknown, known, driver and driven. At the beginning of the problem,

108

8.2 Method 5: KGM Solving Algorithm

all parameters have the state unknown. Then, as the designers set requirements on
the problem, some parameter take the state known. A driver state corresponds to
parameters that are instantiated by an algorithm (e.g. randomly) or by a design
decision, while a driven state defines a parameter that can be calculated in a
relation where the values of all other parameters are known. By assessing the
values of the effort and the influence of each parameter, the algorithm chooses
which parameter should become driver and which becomes driven as consequence
of that decision.

8.2.1 Knowledge Graph Matrix (KGM)

The first step in the method consists in assembling the Knowledge Graph Matrix
(KGM) of the problem. The adjacency matrix of a directed G on n vertices is
the n × n matrix where the non diagonal entry aij is the number of edges from
vertex i to vertex j, and the diagonal entry aii is number of loops at vertex.
However, given the form of knowledge graphs (KG), no loops are present and
therefore the diagonal entries remain empty. Furthermore, each entry in the
matrix is accompanied by the equation id related to that entry. For the case of
the knowledge graph in Figure 8.1, the corresponding adjacency matrix would
take the following form:

KGM =

dwire D w Lc n

dwire 0 1(1) 1(1) 1(2) 1(2)
D 0 0 1(1) 0 0
w 0 1(1) 0 0 0
Lc 0 0 0 0 1(2)
n 0 0 0 1(2) 0

 (8.3)

8.2.2 Effort and Influence

Two measures are used to assess how each node of the knowledge graph is related
to the others. These two measures are used to determine which parameters are
“easier” to solve and which will help solving most of the left unknown parameters.
The first case corresponds to the parameter with the lowest effort, while the second
corresponds to those with the largest influence.

Effort

Each node, or parameter, has an effort (E) for each of the relations in which it is
included. The effort represents the number of parameters that have to be known
in order to resolve a parameter with a certain equation. In a knowledge graph,
the effort in one relation of one parameter corresponds to the sum of all the edges
pointing towards that node.

109

Chapter 8. Managing Complexity IV: Manipulating Parameters

Using the matrix representation, the effort of a parameter p in a relation n is
calculated by:

Ep,n =
l∑

i=1

KGM (i, p) (8.4)

where l equals the number of rows of the KGM. Furthermore, if one column of the
matrix has entries that relate this one to others, the effort of the corresponding
parameter is set to 1,which represents the effort the parameter requires for solving
itself.

Influence

Each node, or parameter, has an influence (I) that measures the number of rela-
tions in which this parameter is present. This equals the sum of all relation present
in the row corresponding to a given parameter and is calculated as follows:

Inp =
l∑

i=1

KGM (p, i) (8.5)

where l equals the number of columns of the KGM. If one row does not contain
entries, the parameter related to it has an influence equal to zero. This means
that this parameter cannot be used to solve others.

Parameter dwire D w n Lo
Effort 1 2(1) 2(1) 2(2) 2(2)
Influence 4 1 1 1 1

Table 8.1: Efforts and influences at problem class.

In Table 8.1 the efforts and influences of the KGM shown in equation 8.3 are
presented. As the table shows, the parameters D, w, n and Lc have all effort
equal to 2 and influence equal to 1, while the parameter dwire has an effort equal
to 1 (which is the effort of solving itself) and an influence equal to 4. This suggest
that for this case dwire is the easiest variable to solve as well as it is the parameter
that if solved will help the most parameters to be solved.

8.2.3 Parameter States

In a design problem, a parameter can have two states, namely, known and un-
known. In the first case, the parameter has been instantiated, and its value
imposes a requirement on the problem. The second case corresponds to the pa-
rameters the designer is interested in solving.

110

8.2 Method 5: KGM Solving Algorithm

A parameter can become known according to two possibilities:

1. As a design decision of the designer or, in the case of automated design, by
an algorithm (e.g. randomly).

2. By calculating it from with a relation where precisely one parameter is
unknown.

In this method, these cases are regarded as two more states possibilities of a
parameter. The first one is termed as driver state, as the parameter being instan-
tiated will drive the calculation of other unknown parameter. The second case
is termed driven state, as the instantiation is driven by the previous algorithmic
instantiation of other parameters. According to this, the four states a parameter
can have in this approach are: known, unknown, driver and driven.

In these terms, the goal of solving a design problem is to transform parameter
with unknown states into known, driver and driven states such that valid solu-
tions are found or a certain objective function is maximized or minimized. It is
important to differentiate between the optimization or constrain solving problem
and the one this method aims at. As this is concerned with defining the order
in which parameter have to be instantiated, the optimization or constrain solving
algorithm for solving the values of the parameters are not further studied. The
three possible types of state transition are:

1. Unknown-known: occurs when the problem statement is being made by
attributing a value to one parameter as a requirement the design has to
satisfy. Is attributed to the change from problem class to problem instance.

2. Unknown-driver: occurs by attributing a value to a parameter according
to a design decision or an algorithmic step (e.g. by randomly attributing
a value). Is attributed to the change from problem instance to problem
solution.

3. Unknown-driven: occurs when the effort of a parameter becomes zero after
KGM recalculation. This means that this variable can be calculated by using
the relation attributed to the effort that became zero. Is also attributed to
the change from problem instance to problem solution.

8.2.4 KGM Transformations

As it will be explained later, each time a state transition occurs, the KGM changes
and has to be recalculated. Recalculating the KGM is performed by:

1. Eliminating all entries in the row and the column that corresponds to that
parameter from the KGM.

2. Recalculating all efforts and influences according to equations 8.4 and 8.5.

111

Chapter 8. Managing Complexity IV: Manipulating Parameters

Parameter dwire D w n Lo
Effort 1 0 1(1) 2(2) 2(2)
Influence 3 0 0 1 1

Table 8.2: Efforts and influences for problem instance with D known

Consider the example of the KGM in equation 8.3. If one assumes that the
parameter D (spring diameter) is set as known and all the others are unknown, the
KGM is transformed as shown in equation 8.6, obtaining the efforts and influences
shown in Table 8.2.

KGM =

dwire D w Lc n

dwire 0 0 1(1) 1(2) 1(2)
D 0 0 0 0 0
w 0 0 0 0 0
Lc 0 0 0 0 1(2)
n 0 0 0 1(2) 0

 (8.6)

8.2.5 Identifying Driver and Driven

The essence of the KGM algorithm resides in choosing drivers and identifying
which parameter becomes driven as consequence of the that decision. Drivers
are identified by choosing the parameter with the lowest effort. If the value of
the minimum effort is shared by more than one parameter, then the parameter
with the highest influence among them is chosen. By doing so, it is avoided that
two parameter become over constrained as the algorithm progresses. This also
minimizes the effort of other parameters. In the case that the minimum effort
and the highest influence are shared by more than one parameter, either one of
the parameters can be chosen as driver parameter.

Consider the efforts and influences in Table 8.2. As it can be seen, the pa-
rameter dwire has the lowest effort. As no other parameter has an effort equal to
that of dwire, this parameter becomes automatically a driver parameter.

Drivens are identified as those parameters whose effort becomes 0 (zero) after
a KGM transformation has taken place. In this case, this parameter can be
calculated by using the relation corresponding to the effort that became 0 (zero).

112

8.2 Method 5: KGM Solving Algorithm

Identified

knowns?
Transform KGMyes

Identified

drivens?

Identified

drivers?

yes yes

Assemble KGM
Calculate Efforts

and Influences

no

no

no

finished

Identify knowns

Identify drivens

Identify drivers

Figure 8.2: KGM solving algorithm.

8.2.6 The Algorithm

Having presented the KGM, its transformations and a method for identifying
drivers and drivens, the algorithm for recognizing the sequence in which to solve
a parametric design problem is presented in Figure 8.2.The steps in the algorithm
are the following:

1. Make a knowledge graph including all relations and parameters.

2. Assemble the KGM and calculate efforts and influences.

3. Identify which parameters have been attributed as known and transform
the KGM.

4. Identify if any variable has changed it state from unknown to driven. If this
is the case, perform a KGM transformation. This step is continued until no
parameter change to driven state.

5. Identify one driver parameter and transform the KGM.

6. Repeat steps 3, 4 and 5 until all parameters are changed to the state driven,
driven or known.

Table 8.3 shows the results of applying the algorithm on the example shown in
Table 8.2. As the table shows, the state transition occurs when setting the value
of D to known in step 1. In step 2, the recalculated efforts and influences are
shown. Here, the variable dwire is identified as the best to be changed into driver.

113

Chapter 8. Managing Complexity IV: Manipulating Parameters

Table 8.3: Result of KGM transformations in example.

Parameter dwire D w n Lo
Step 1 Effort 1 2(1)* 2(1) 2(2) 2(2)

Influence 4 1 1 1 1
Step 2 Effort 1** 0 1(1) 2(2) 2(2)

Influence 3 0 0 1 1
Step 3 Effort 0 0 0*** 1(2) 1(2)

Influence 0 0 0 1 1
Step 4 Effort 0 0 0 1(2)** 1(2)

Influence 0 0 0 1 1
Step 4 Effort 0 0 0 0 0***

Influence 0 0 0 0 0
State transition: * unknown-known, ** unknown-driver, *** unknown-driven

Fix

D

Set Dwire

as driver

Driven w with

relation 1

Set n

as driver

Drive Lo with

relation 2

Figure 8.3: Example of strategy.

It can also be seen that the variable w gets an influence of zero, as this parameter
cannot influence solving others. In step 3, the recalculated KGM measurements
indicate that w becomes driven, as its effort drops to zero. As w is only contained
in relation 1, its effort only depends on this equation. Therefore, the value of w
can be calculated by using equation 1 in combination with the previously defined
values of D and dwire. In step 2, the parameter n is chosen as driver, as no other
parameter became driven. However, parameter Lo could have also be chosen,
as its effort and influence values equals the one of n. As result of a new KGM
transformation, parameter Lo becomes driven with equation (2).

The result of applying the algorithm is a sequence of proposed parameters state
transitions. The sequence can be outlined by keeping track on the order in which
parameter states change from unknown to known, drivers and driven. In the case
of driven, the relations through which they are calculated have to be recorded
too. After this algorithm is applied to a given parametric design problem, the
resulting sequence can be used by a constraint solving or optimization algorithm
to search for the numerical solution of the problem. For the example in Table 8.3,
the resulting sequence is shown in Figure 8.3.

114

8.3 Benchmarking

8.3 Benchmarking

In [30] a survey of decomposition methods for constraint systems is presented.
Here, decomposition methods have been investigated from different perspectives,
and compared against each others. One consists in identifying subsystem as an in-
teresting (i.e., solvable) subsystem. A second approach aims at identifying points
of weakness in the constraint system for partitioning the problem. A third one
consists in identifying subsystems as solvable provided that the complementary
subsystem is solvable as well. The fourth, denominated recursive division meth-
ods, works by iteratively splitting the constraint system into components, them-
selves subject to further splitting. The review finishes by proposing two properties
that are desirable to meet real-life applicative requirements: generality and relia-
bility.

This algorithm differentiates from the ones presented in [30] as follows:

1. The directed graph consists of nodes denoting the parameters, and arcs
denoting its relations, while the adjacency graph of the methods in [30] is
composed of nodes that represent both the parameters and the relations.
Arcs are used to describe which parameters are involved in which relations.
The adjacency matrix of this graph allows solving asymmetric problems.
Asymmetric problems are those in which at least one relation contains a
parameter that is not solvable as function of the others.

2. The decomposition is based on two complexity measurements, namely, the
effort and the influence. Because of the generality of the approach, the
algorithm can be used in different types of CS problems, as for example,
geometric and topological problems.

3. The KGM algorithm does not recognizes systems of equations, and is there-
fore limited to be used in under-constrained problems. Other algorithms
discussed in [30] do have the capability of recognizing systems of equations
and over-constrained problems.

8.4 Example: Compression Spring

The parametric design of a compression spring is used to demonstrate the algo-
rithm at the hand of one combination of known and unknown parameters. A
compression spring is modeled as a single element with 11 parameters and 6 re-
lations (material is kept constant). The parameters are stated in Table 8.4 and
the relations in equation 8.7 - 8.12. An ID has been attributed to each relation.
Figure 8.4 shows the KG of this example with the IDs of each relation appearing
along the arcs. At the hand of the KG, the KGM is assembled and the efforts
and influences of each parameter are calculated, as shown in Table 8.5 and 8.6
respectively.

115

Chapter 8. Managing Complexity IV: Manipulating Parameters

Table 8.4: Parameters considered in compression spring design.

Parameter Description
D mean diameter
d wire diameter
n number of coils
A space between coils
L0 uncompressed length
Ls compressed length
Lc maximum compressed length
s compression
sc maximum compression
R spring constant (stiffness)
F force at compression

R =
G

8
· d4

D3 · n
7→ ID = 1 (8.7)

F = R · s 7→ ID = 2 (8.8)

L0 = s+ Ls 7→ ID = 3 (8.9)

L0 = sc+ Lc 7→ ID = 4 (8.10)

Lc = n · d 7→ ID = 5 (8.11)

L0 = n · (A+ d) 7→ ID = 6 (8.12)

The combinations of known and unknown that have been used to demonstrate
the algorithm is shown in Table 8.7.

In Table 8.8 the efforts and influences that result from applying the algorithm
are presented, while Figure 8.5 shows the resulting sequence. As it can be seen,
some parameters have more than one effort value attributed. This is the con-
sequence of having some parameters present in more than one equation. The
table also shows that the parameter sc becomes driven with equation 8.10 after
recalculating the KGM for the known parameters. This is due to the fact that
all parameters in relation 8.10, except sc, have an attributed value. In step 4, it
can be seen that although the parameters s, R and Ls have the same minimum
value of the effort (effort = 1), the parameter s is chosen as driver. The reason for
doing so is that the influence of s is larger than that of the parameters R andLo,
which means that attributing a value to this parameter will reduce the effort of
two other parameters, speeding the course of the algorithm.

116

8.4 Example: Compression Spring

Figure 8.4: Knowledge graph of spring design. 117

Chapter 8. Managing Complexity IV: Manipulating Parameters

Table 8.5: KGM of compression spring design.

D d n A Lo Ls Lc s sc R F
D 1(1) 1(1) 1(1)
d 1(1) 1(1)

1(5)
1(6)

1(6) 1(6) 1(5) 1(1)

n 1(1) 1(1)
1(5)
1(6)

1(6) 1(6) 1(5) 1(1)

A 1(6) 1(6) 1(6)
Lo 1(6) 1(6) 1(6) 1(3) 1(4) 1(3) 1(4)
Ls 1(3) 1(3)
Lc 1(5) 1(5) 1(4) 1(4)
S 1(3) 1(3) 1(2) 1(2)
Sc 1(4) 1(4)
R 1(1) 1(1) 1(1) 1(2) 1(2)
F 1(2) 1(2)

Table 8.6: Initial efforts and influences.

Parameters D d n A Lo Ls Lc s sc R F
Start E 3(1) 3(1)

3(6)
2(5)

3(1)
3(6)
2(5)

3(6) 3(6)
2(4)
2(3)

2(3) 2(5)
2(4)

2(2)
2(3)

2(4) 2(2)
3(1)

2(2)

Inf 3 8 8 3 7 2 4 4 2 5 2

118

8.4 Example: Compression Spring

Table 8.7: Problem instance of spring design example.

Parameter State
D unknown
d unknown
n unknown
A unknown
L0 Known
Ls unknown
Lc Known
s unknown
sc unknown
R unknown
F Known

Lo Lc F Sc

ndAD0

R s Ls

Dv

Dr

K

Known

Parameter

Driver

Parameter

Driven

Parameter

K K

Dr

Dv

DvDv

Dv Dv Dv

Dr

K

Figure 8.5: Instantiating order of parameters in spring example.

119

Chapter 8. Managing Complexity IV: Manipulating Parameters

Table 8.8: Results of KGM transformation in example.

D d n A Lo Ls Lc s sc R F
Step 1 E 3(1) 3(1)

2(6)
1(5)

3(1)
2(6)
1(5)
**

2(6) 0
*

1(3) 0
*

2(2)
1(3)

0(4) 2(2)
3(1)

0
*

Inf 3 6 6 2 0 1 0 2 0 4 0
Step 2 E 2(1) 2(1)

1(6)
0(5)

0 1(6) 0 1(3) 0 1(2)
1(3)

0 1(2)
2(1)

0

Inf 2 3 0 1 1 0 2 0 3 0
Step 3 E 1(1) 0 0 0(6)

0 1(3) 0 1(2)

1(3)
0 1(2)

1(1)
0

Inf 1 0 0 0 0 1 0 2 0 2 0
Step 4 E 1(1) 0 0 0 0 1(3) 0 1(2)

1(3)
*

0 1(2)
1(1)

0

Inf 1 0 0 0 0 1 0 2 0 2 0
Step 5 E 1(1) 0 0 0 0 0(3)

0 0 0 0(2)

1(1)

0

1. Inf 1 0 0 0 0 0 0 0 0 0 0
Step 6 E 0(1)

0 0 0 0 0(3)

0 0 0 0(2)

1(1)

0

Inf 0 0 0 0 0 0 0 0 0 0 0
State transition: * unknown-known, ** unknown-driver, *** unknown-driven

120

Part IV

Results and Conclusions

121

Chapter 9
Integration and
Implementation

This Chapter discusses the integration of the methods discussed in Chapters
5, 6, 7 and 8. Two computer implementations demonstrating the resulting
method are presented: one generic toolbox to test the proposed methods and
one specific implementation that automates CSIM design.

9.1 Introduction

This chapter explains how the methods proposed for complexity management
are integrated into a methodology for CDS. The resulting methodology is named
CDS by Complexity Management (CDS-CM). A preliminary generic software im-
plementation of this methodology has been developed, and is described in Ap-
pendix C. The design of a transmission system, presented in Subsection 9.2.4, is
used as example to demonstrate it. Section 9.3 presents an specific implementa-
tion of this methodology to CSIM design.

9.2 Methodology: CDS-Complexity Management

The flow chart in Figure 9.1 shows how the techniques proposed in this thesis can
be integrated to result in a methodology for CDS: CDS by Complexity Manage-
ment (CDS-CM). The methodology consists of two general phases: initialization
and generation. The initialization phase consists of transforming the design prob-
lem into a formal model of a problem class. The generation phase takes over the
automatic generation of design solutions.

123

Chapter 9. Integration and Implementation

Decompose

problem

Assemble

ToSE equations

Find implicit

cardinalities

Select abstraction

group to solve

Generate

sequence

Generation Phase (Problem Instance)

Initialization Phase (Problem Class)

Make TARD

model

Identify parameters of

instantiated elements

Assemble and solve KGM

for identified parameters

Check

consistency

Formulate

problem

Set and specify

requirements

Solutions

FBS problem

formulation

ADT based

decomposition

Local Grammar

Method

Figure 9.1: General procedures in CDS by Complexity Management.

9.2.1 Initialization Phase

The initialization aims at developing formal and consistent design problem mod-
els. This is achieved by:

1. Problem formulation: consists in obtaining a consistent model of the in-
formation contents of the problem as proposed in Chapter 3. This thesis
proposes FBS design formulation as means of performing this task.

2. Problem decomposition: consists in reducing the dimensionality of the prob-
lem by decomposing it into smaller problem chunks with lower degrees of
complexity. By doing so, search processes in the generation phase can fo-
cus on specific levels of abstraction. This thesis proposed ADT problem
decomposition as a method for doing so.

3. Making the TARD model: consists of representing a problem class by means
of the four types of building blocks in TARD: Elements, C-relations, H-
relations and ACO-relations. Once the problem is translated into its TARD
form, its formulation can be reused for different problem instances. Further-
more, the model can be integrated into other TARD models to be reused in
other design problem formulations.

4. Assembling ToSE equations: Is done as explained in Chapter 7. These

124

9.2 Methodology: CDS-Complexity Management

equations allow setting requirements on the problem’s topology. During the
generation phase, ToSE equations allow controlling the generation of design
solutions.

9.2.2 Generation Process

Once the initialization phase is completed, a generation phase determines how to
instantiate the elements and relations in the problem. It is important to notice
that the method only determines strategies, or orders, in which the problems
can be solved. The algorithms for instantiating these building blocks have been
kept out of the scope of this research. The generation procedure consists of four
activities: (1) checking the consistency and calculating implicit cardinalities, (2)
selecting an abstraction-groups, (3) solving that abstraction-group by generating
sequences, and (4) solving the values of the parameters contained in each element.

Checking Consistency

After ToSE is derived, the first operation performed is to check for inconsistencies
in the cardinality values. A consistent set of equations is required for determining
valid solutions. There are two consistency rules that have hold:

1. Balance equations have to meet equality.

2. The value of each cardinality has to be a positive integer.

In case that not all cardinalities are known, the ToSE equations are used
to determine if any other cardinality can be directly computed. This operation
reduces the degree of freedom of the problem.

Identifying Abstraction-group to Solve

The KGM algorithm described in Chapter 8 is applied to ToSE to identify which
abstraction-group to solve, as indicated in Figure 9.2(a). The ToSE equations and
the cardinalities values are fed into the KGM algorithm, obtaining a list of driver
cardinalities. The cardinality with the lowest effort determines the abstraction-
group to solve. As the successive generation of a sequence will fix the cardinalities
of other elements and relations, the KGM algorithm has to be applied recursively
after obtaining the solution of one abstraction-group, as indicated in Figure 9.2(b).

Generating Sequences

Simple abstraction-groups are solved by attributing values to the elements car-
dinalities according to the order prescribed by the KGM algorithm. In complex
abstraction-groups, sequences are generated using the Local Grammar method
described in Section 7.3.

125

Chapter 9. Integration and Implementation

BalanceEquations

VerticalEquations

Input Output

Strategy List

 (Driver/Driven)

Cardinalities

effort

cardinalities

c
a

rd
in

a
lit

ie
s

KGM Algorithms

(a) KGM input and output.

Find implicitly

given cardinalities

Decide which

Abstraction-group

to solve

Generate

sequence

KGM

(b) Abstraction-group selection algorithm.

Figure 9.2: Choosing abstraction groups.

Identify first

element

Identify local rules

of element

Evaluate

complementary rules

Select rule

to apply

Instantaite rule Identify edge elementFinish ?

NO

YES

Figure 9.3: Generation algorithm for local grammar method.

Figure 9.3 shows a simple algorithm for generating sequences using this method.
The local grammar rules are selected by checking the references to outgoing C-
relations of the element at hand. Thereafter, it is checked if any complementary
rules can be applied. The choice of which of the remaining rules to choose is
done by following a certain algorithm, e.g. randomly. If the cardinalities i and
j of the chosen C-relation are not known yet, they have to be generated. Gen-
erated sequences are stored as a sequence object in the corresponding H-relation
instance. The corresponding cardinalities are calculated according to the sequence
equations. If the KGM analysis does not result in any more drivers or drivens,
the topology of the problem is completely defined and is not subject of further
generation.

126

9.2 Methodology: CDS-Complexity Management

Identify

instantiated

elements

Identify ACO-

relations
Assemble KGM

Solve KGM
Instantiate

Parameters

New

Cardinalities

values?

NO

YES Finish

Figure 9.4: Identifying and solving parameter values.

Identifying and Solving Parameter Values

Instantiated elements have parameters with no values assigned. These steps con-
sists in identifying which parameters appear as consequence of instantiating el-
ements, and attributing them with values, as indicated in Figure 9.4. In order
to do so, the ACO-relations in which the parameters are present are listed too.
This information is then used to assemble a KGM and determine the order in
which they can be solved. In case the proximity relations (also an ACO-relation)
determines the instantiation of an element, the procedure is repeated taking into
account the parameters of the instantiated elements.

9.2.3 Generic Implementation

The method described in Section 9.2 has been implemented into a generic soft-
ware toolbox. The software automatically generates solutions for design problems
represented by a TARD model. Appendix C describes the generalities of the im-
plementation of the TARD building blocks and the construction of the ToSE
equations.

9.2.4 Example: Drive train Design

This example considers a schematic composition of a vehicle drivetrain, as for
example the one shown in Figure 9.5. The goal of this example is to show the
collaborative integration of TARD, the Local Grammar method, ToSE and the
KGM algorithm by the implemented toolbox. For explanatory reasons, paramet-
ric descriptions of the elements have not been taken into account.

Problem class

The TARD model of this example is shown in Figure 9.6. It consists of 16 el-
ements (in addition to the zero-level element) and three abstraction-groups for
more detailed levels. The only complex abstraction-group corresponds to H1.

127

Chapter 9. Integration and Implementation

Motor

Gearbox

Differential

Figure 9.5: Sketch of a drivetrain in a car.

Depending on the amount and position of known cardinalities, the solution space
and shape changes and expands.

Problem instance

The objective of this problem instance is to generate a topology that does not
violate the constrains imposed by the specified cardinalities, which are:

• One motor, connected to one axle1: eMotor = iC1 = jC1 = 1.

• One input shaft and one output shaft per gearbox:
eGearinputShaftlocal = eGearoutputShaftlocal = 1.

• Due to their functions, the components of the differential are all connected
one-on-one, with the exception of the one-on-two connection between the
planetGear and sideGear: (i, j) C12 = C13 = C15 = iC14 = 1 and
jC14 = 2

• A two-on-one C-relation for C3: iC3 = 2 and jC3 = 1.

• Two wheel axes connected to the differential: iC5 = 1 and jC5 = 2.

The last point poses an interesting test for the application: there should be
twice as many instances of the element differential as of the element axle2. The
next step is to feed this graphical network together with the defined cardinality
values into the application in order to obtain a 1st order representation com-
posed of 1st order elements, C-relations and H-relations object instances. This is
achieved by hard coding the data into the application by means of an input class.
On the basis of this input, the algorithm is able to derive a solution in the form
of a 2nd order network.

128

9.2 Methodology: CDS-Complexity Management

M
o
to

r

C
1

A
x
le

1
G

e
a

rb
o

x
A

x
le

2
D

if
fe

re
n
ti
a
l

A
x
le

3
W

h
e
e
l

G
e
a
ri
n
p
u
t

s
h
a
ft

G
e
a
ro

u
tp

u
t

s
h
a
ft

G
e
a
rs

h
a
ft

G
e
a
r

C
7

C
9

C
1
1

C
8

C
1
0

H
1

C
2

C
3

C
4

C
5

C
6

D
if
fI

n
p
u
t

s
h
a
ft

R
in

g
G

e
a
r

P
la

n
e
tG

e
a
r

S
id

e
G

e
a
r

D
if
fO

u
tp

u
t

s
h
a
ft

C
1
2

C
1
3

C
1
4

C
1
5

H
2

D
ri
v
e
T

ra
in H
0

0

Figure 9.6: TARD representation of drive train example.

129

Chapter 9. Integration and Implementation

Problem solution

Figure 9.7 shows one of the automatically generated solutions for the problem
instance descrived before. This solution demonstrates the functionality of the
implementation, especially in the treatment of the system of equations. The 2nd

order network resulting from the determination of the cardinalities represents
the topological solution for a drivetrain design. Here, the names of the element
instances are followed by an index starting at zero, which serves as ID for identi-
fying different instances of the same element class. For example, gearbox00 and
gerbox01 resemble the first and the second instance of the type gearbox. The
solid arrows represent C-relation instances connecting the element instances. A
C-relation connecting one to two elements and vice versa is represented by two sep-
arate arrows, as for example between elements Axle1 and Gearbox. Accordingly,
the dotted curved arrows indicate the H-relation instances, which are pointing
towards the C-relation instances in the respective abstraction-groups.

The design solution generated by the method consists of a single motor con-
nected to two gearboxes via a single axle. There are two gearboxes connected to
a single axle, which in turn drives two differentials. Finally, the two axles behind
each differential are connected to a single wheel. It is worth mentioning that the
multiple existence of the abstract elements gearbox and differential have resulted
in two independent instances of their abstraction-groups. Proof of a correct ex-
ecution is the existence of twice as much gearbox instances as Axle2 instances.
As the network is consistently connected, it is demonstrated that all unspecified
cardinalities are properly calculated or generated according to the theory.

The generated solution (single motor, double gearbox and double differential)
is analogous to the drivetrain of four-wheel drive vehicles having a normal and
low range gearbox with differential at each axle.

130

9.2 Methodology: CDS-Complexity Management

Figure 9.7: The resulting 2nd order instantiated network representing a solution of the
generation process (generated automatically by the implementation.)

131

Chapter 9. Integration and Implementation

9.3 Automating CSIM Design

Applying the complexity management techniques to CSIM design has resulted
in a a bottom-up recognition approach (see Subsection 7.3.4). The method
and algorithms for cooling generation have been implemented using C#© [55].
SolidWorks© [14] is used as interface for modeling the 3D mold parts. Further-
more, a User Interface (UI) was developed using SolidWorks© API [14]. This
section presents the automation method from a general point of view, and the
results from its implementation into a software tool.

The first and second steps of the initialization phase have been performed in
the examples shown in Chapter 5. This result is used to build the TARD model
presented in Figure 9.8. The considerations taken for making the TARD model
and the ToSE equations that follow from this model are presented in Appendix
B.

9.3.1 Synthesis Strategy

Figure 9.9 presents a summary of the steps in the CSIM design automation strat-
egy that follow from the TARD model and ToSE equations. The method consists
of:

1. Making a voxel model of the solid parts Mold Part and Plastic Parts. This
step consists in transforming the requirements from the shape model into
fields, as indicated in Chapter 5, Subsection 5.3.3.

2. The second step consists in generating a mesh of Points on top of the voxel
model and attributing color to the points according to the relations shown
in Table 5.3. By doing so, a pool of elements Points is obtained. As con-
sequence, the abstraction-groups absorberChannels, connectorChannel, in-
putSegment and outputSegments, are generated by using a recognition ap-
proach, as indicated in Subsection 7.3.4.

3. Generating absorberChannels by connecting points using the Local Gram-
mar method and a recognition approach.

4. Generating cooling circuits by connecting Absorber channels with Connector
channels. The later are generated by assembling pairs of green points also
using the Local Grammar method and a recognition approach. Furthermore,
by connecting Absorber channels and Connector channels to inputSegment
and outputSegments fully defined circuits are obtained.

5. Generating cooling systems is performed by assembling combinations of the
previously generated cooling circuits. Here again, all obtained circuits form
a pool of elements from where a recognition approach determines possible
cooling system configurations.

132

9.3 Automating CSIM Design

In
p

u
tS

e
g

m
e

n
t

C1

B
lu

e
P

o
in

t

H
1

C11

C
o

o
lin

g
S

y
s
te

m

H
0

C
o

o
lin

g
C

ir
c
u

it

A
b

s
o

rb
e

rC
h

a
n

n
e

l
C

o
n

n
e

c
to

rC
h

a
n

n
e

l
O

u
tp

u
tS

e
g

m
e

n
t

C2

C3 C4

C6

C5
C7

C8

C9

G
re

e
n

P
o

in
t

B
ro

w
n

P
o

in
t

C10

B
lu

e
P

o
in

t
G

re
e

n
P

o
in

t
B

ro
w

n
P

o
in

t

C17

C16

B
lu

e
P

o
in

t

C12

B
lu

e
P

o
in

t
G

re
e

n
P

o
in

t

C14

C13

H
2

H
3

H
4

H
5

L
e

v
e

l
0

L
e

v
e

l
1

L
e

v
e

l
3

L
e

v
e

l
2

C15

Figure 9.8: TARD model of CSIM problem.

133

Chapter 9. Integration and Implementation

The initial state of the problem

consist of mold parts

Mold parts and plastic parts are

discretized into voxels.

A grid of points is generated on top

of the voxel mesh.
Each point gets a color that

determines its functionality.

Blue points are connected creating

Absorber Channels.
Connection channels and

Exchanger form circuits.

Figure 9.9: Method for automating CSIM design.

134

9.3 Automating CSIM Design

Figure 9.10: Mold of telephone used as example.

Table 9.1: List of attributes of a voxel element.

Attributes Description Model
Core Identifies the core of the mold Boolean

Cavity Identifies the cavity of the mold Boolean
Product Identifies the product or plastic part of the mold Boolean

Inlet/outlet Identifies if a surface is used for inlets or outlets Boolean
Non drillable Identifies if a surfaces cannot be drilled Boolean

Size Defines the size of the vertices of the voxel Boolean
Position Defines the position of the voxel double [i,j,k]

The ToSE (shown in appendix B) equations are used to keep topological con-
sistency of the resulting solutions. The following sections explain each of the step
of the method at the hand of telephone mold example shown in Figure 9.10.

Voxel Mesh Generation

Creating a mesh of voxels is the first step of this method. By using voxels, the
geometric model can be transformed into a logic one. The idea of using voxels
resulted from applying the ADT Based Decomposition to the physical domain.
Although this transformation results in a loss of geometric information, it also
eases solving spatial constraints. Table 9.1 summarizes the attributes of a voxel
object. Figure 9.11 shows two sections of the voxel mesh of the telephone mold
shown in Figure 9.10. Here, the core is indicated in dark green, the cavity in light
green and the part in red.

135

Chapter 9. Integration and Implementation

Horizontal section

Vertical section

Figure 9.11: Sections of the telephone voxel mesh model.

Points Generation

After making the voxel mesh, a 3D grid of points is generated. This grid is set
inside the voxel mesh model of the mold. The distance between points in the
grid is based on relation PCC-2, whos values can be found in [28]. The objective
of this step is to define the spatial locations in the mold where cooling channels
can eventually be placed as well as those places where it cannot. To do so, a
“color” is attributed to each point in the grid. This assigned attribute is used to
characterize the function of the point. These are:

• Blue: defines points that can be used to create an Absorber channel.

• Green: defines points that can be used to create a Connector channels.

• Brown: defines points on the surface of a core and cavity where Exchanger
channels can be placed.

• Grey points: define points nearby the melt where channels cannot be placed
to overcome mold break.

• Black points: define points where channels cannot be placed to avoid mold
break.

136

9.3 Automating CSIM Design

Table 9.2: Logic relations defining the color of points.

Point color Surrounded by
Green (core voxels) or (cavity voxels)
Brown [(core voxels) or (cavity voxels)] and (Exchanger voxels)
Black [(core voxels) or (cavity voxels)] and [(non drillable voxels)

or (product voxels)]
Grey [(core voxels) or (cavity voxels)] and (product voxels)
Blue [(core voxels) or (cavity voxels)] and [Grey points]

Figure 9.12: Section of telephone mold with points.

The color of a point is determined as a function of the voxels surrounding
that point. In Table 9.2 the logic relations to determine the colors are presented.
This design step allows determining the primitive element Point for all three
types of channels. Furthermore, this step determines the solution space of each
design function in the problem, namely, to cool the plastic part (blue points), to
transport the coolant (green points) and to exchange the coolant with exterior
heat dissipation devices (brown points). Figure 9.12 shows the result of applying
the point grid to the case of the telephone mold.

Absorber Channels Generation

Once all the points have been generated, the abstraction-group corresponding
to the element absorberChannel is solved by using a recognition strategy. This
is done by recognizing patterns of blue points that can be connected to form
a channel. The criterion used in the current implementation of the method is
based on: drilling manufacturing technique, minimum channel length, minimum
heat absorption index and minimum average homogeneity index. An example of
channels for the example of the telephone is presented in Figure 9.13.

137

Chapter 9. Integration and Implementation

Section showing cooling channels

Non-overlapping cooling channels

Figure 9.13: Group of aleatory selected absorber channels in the telephone mold.

Circuits Generation

Cooling circuits are designed by combining absorberChannels capable of forming
a circuit. This is done by defining sequences of C-relations in the abstraction cor-
responding to the element circuit. A recognition strategy is used, following the
indications presented in Chapter 7. Knowledge about the construction of feasable
sequences are based on knowledge rules of expert designers at Philips ATC. The
A∗ algorithm [36] is used as recognition algorithm that determines paths of con-
nectorChannels between absorberChannels. The resulting path determines the
layout of the connectorChannels. Furthermore, inputSegements and outputSege-
ments are generated by recognizing which brownPoints are closer to the obtained
circuits.

Cooling Systems Generation

Cooling systems are generated by recognizing combinations or coolingCircuits
satisfying the physical coherence constrains of the problem. In the implementation
developed in this work, this is performed by randomly combining coolingCircuis
and assessing if they violate any of the constraints.

138

9.3 Automating CSIM Design

Figure 9.14: Solution space of CSIM design for telephone mold.

9.3.2 Results

Following these steps results in several candidate cooling systems. Figure 9.14
shows the solution space for the case of the mold in Figure 9.10. Each point in the
graph corresponds to one cooling system layout. The y-coordinate corresponds to
the performance parameter heat absorption, while the x-coordinate corresponds
to the length of the system. As the figure shows, a wide cloud of solutions is
obtained for this example. By assessing their performances, desired solutions can
be selected. Figure 9.15 shows four cooling solutions drawn in SolidWorks©. The
results suggest that this method is capable of generating feasible cooling solutions.

139

Chapter 9. Integration and Implementation

Figure 9.15: CSIM design solutions for telephone mold.

140

Chapter 10
Conclusions &
Recommendations

This chapter presents a discussion on the usage of complexity management
in the development of methods for computational design synthesis. The
main issue is whether such techniques can support the generic development
of Computer Aided Synthesis tools. The chapter finishes presenting recom-
mendations for further research.

10.1 Conclusions

In general terms, automating routine design problems can be performed in two
different fashions: developing specific methods for specific problems, or developing
generic methods for problem families. It is the second approach which can enable
the future development of CAS systems, and the one this thesis dealt with. Such
an approach is confronted with three main challenges. Firstly, design problems
have to be translated into terms that allow their study independent of its semantic
contents, thus to define a common language. Secondly, basic problem character-
istics have to be identified, which consists in finding the common ground of these
problems. And thirdly, general problem solving approaches have to be developed.
This thesis contributed to solving these challenges by investigating complexity in
design. Its result is a generic approach for automating artifactual routine design
problems. Its computer implementation demonstrates the method can be used
for automating such problems. However, further research is required to achieve
a true generic software for design automation, as it is explained in Section 10.2.
The following sections present a discussion on these issues.

141

Chapter 10. Conclusions & Recommendations

First challenge: a common language for routine design

The first challenge has been solved by developing a scheme for formulating arti-
factual routine design problems, described in Chapter 3. The scheme has been
developed by mapping models of information types found in design literature to
schemes for formulating problems found in problem solving theory. The informa-
tion contents has been further characterized by classifying commonly used mathe-
matical models in design automation in the following groups: parametric, spatial,
shapes, fields and topology. This has enabled benchmarking design problems that
at first sight seem very different. The results represent a common language for
understanding the similarities and differences of between routine design problems.
Furthermore, the solution approach to one given problem can be extrapolated to
others, as long as both formulations are equal.

Second challenge: a generic structure for design problem

By making an analogy to the structure of analysis problems (which deal with
understanding the behavior of “things”), this thesis presents a new framework
for structuring design problems. The structure consists of three levels of ab-
straction: the problem class, the problem instance, and the problem solution. A
problem class is formed by non instantiated elements, parameters and relations.
A problem instance has partially instantiated elements, parameters and relations,
which represent the requirements of the problem. Problem solutions are formed
by fully instantiated elements, parameters and relations. This structure allows
generalizing design problems by:

• defining the types of representations required for modeling each abstraction,

• studying the complexity of each abstraction by analyzing the configuration
of the used representations,

• developing procedures and operations to solve each problem domain, and

• identifying common problem structures.

This framework, described in Chapter 4, constitutes one of the main contri-
butions of this work, as it allows studying design problems in abstract terms and
identifying the characteristics of design problems from where complexity arises.

Mapping the structuring framework to ADT model of complexity, has resulted
a new model of design complexity for routine design. It has been found that the
complexity of problem classes is related to the consistency of the information con-
tents and the problem formulation. One cause of complexity results from having
a less suitable problem formulation. Another is the lack of differentiation between
problem chunks and its interrelations. In this sense, in complex problem classes
the design problem is not addressed correctly and it has a high dimensionality
(few levels of abstraction).

Complexity in problem instances depends on:

142

10.1 Conclusions

1. The distribution of the requirements: concentrated in the top abstraction
layers, in the bottom layers or a mix of both.

2. The constrains imposed to the cardinalities of elements. Cardinality is a
variable that defines the number of times an element can be instantiated.
If cardinalities are unknown and unbounded, the number of instantiated
elements (and therefore the number of parameters) explodes.

As these complexities can be identified independently of problem specific se-
mantics, they represent a generic approach for determining what the problem to
be solved is. This brings the issues of solving routine design problems to that of
managing their complexity, which verifies the first hypothesis of this research.

Third challenge: generic solving approaches

Different complexity management methods have been developed. Figure 10.1
presents an overview of these methods.

Build TARD

model

Assemble ToSE

equations

E
le
m

en
ts

C
-r
el
at

io
ns

H
-r
el
at

io
n

A
C
O
-r
el
at

io
ns

P
am

et
er

s
B
al
an

ce
 e

qu
at

io
n

V
er

tic
al
 e

qu
at

io
ns

C
ar

di
na

iti
es

Lo
ca

l g
ra

m
m

ar
 m

et
ho

d

K
G
M

 S
ol
vi
ng

 a
lg
or

ith
m

Formulate design

problem

Decompose

design problem

FB
S
 b

as
ed

 fo
rm

ul
at

io
n

A
D
T b

as
ed

 d
ec

om
po

si
tio

n

Organizing information contents

(Problem class)

Manipulating building blocks

(Problem instance)

Determine

generation

strategy

Representations

Figure 10.1: Integrated approach to complexity management.

Information Contents
A first group consists of two methods that aim at organizing the information
contents. One method targets the development of consistent problem formula-
tions, while the second focuses on decomposing a problem into different levels
of abstraction. Both methods target complexity of problem classes. By using
the FBS model, the first method is capable of keeping a detailed track of the
relations among the information contents of the problem. The second method
is founded upon ADT’s axioms ruling good designs, which sets a formal criteria
for decomposing design problems. The application of these methods enable the
initialization of a synthesis process, which according to Cagan et al. [4] has not
received enough attention in literature. The result of applying these two methods
is a well organized design problem with low dimensionality.

143

Chapter 10. Conclusions & Recommendations

Representations
The second group consists of a new framework for the computational represen-
tation of design problems named TARD. TARD integrates four types of building
blocks (elements, C-relations, H-relations and ACO-relations) to support mathe-
matical models for design automation by exhibiting the characteristics of the de-
sign formulation scheme and problem structure previously described. In TARD,
elements group parameters, ACO-relations determine relations between param-
eters, C-relation describe how different elements types can be connected, and
H-relations describe the relations between different levels of abstraction. This
configuration has number of advantages:

1. allows developing solving strategy methods as function of the organization
of building blocks,

2. abstraction groups can be solved independent from others,

3. several domains can easily be represented (juts adding extra H-relations),

4. it enables both bottom-up and top-down design strategies, and

5. solutions can be generated by using either parametric or grammar ap-
proaches.

Building Blocks Manipulation
The third group of methods developed in this research relates the structure of a
problem instance to a strategy for solving it. This part of the research focused on
parametric and topology models. The result is a theory about the parametrization
of topologies represented in TARD, and two methods for manipulating building
blocks. One method deals with elements, while the second does it with parame-
ters.

ToSE, or the Topology Systems of Equations, represents topologies in the
form of algebraic equations. These equations have three specific functions: keep
consistency of the topology, identify distributions of requirements, and control the
instantiation of elements. Furthermore, ToSE equations are assembled for a given
TARD model following strict rules, which allows for a straightforward computer
implementation. The main advantage of ToSE is that topologies can be solved
using known constraint solving methods.

This thesis developed the Local Grammar method as means of solving TARD
instance problems with under constrained ToSE equations. This method is an
adaptation of the grammar approaches described in Chapter 2. However, it dif-
ferentiates from them in two aspects:

• the generation of solutions is controlled by the cardinalities in ToSE, and

• it integrates functions that determine if the generation algorithms should
exhibit creation or recognition characteristics.

144

10.1 Conclusions

Creation corresponds to a top-down approach, for example, assessing first the
types of elements that can be connected, and then instantiating and connecting
them. Recognition, on the other hand, corresponds to a bottom-up approach. For
example, a pool of instantiated elements exists, and its characteristics determine
how they can be connected. This characteristic, and the fact that it is generic
to problems represented by TARD, opens a new way of solving design problems.
For example, assessing the differences in the design solutions of problems that are
specified in terms of what we want (requirements at the top abstraction levels) vs.
those specified in terms of what we have (requirements set at the bottom levels
of abstraction). This moves the task of designers from finding solutions towards
designing the right problems.

The KGM solving algorithm is proposed for determining the order in which
parameters can be instantiated. The algorithm gets its name from the Knowledge
Graph Matrix used for representing the structure of parameters and relations. The
algorithm is based on two complexity measures that can be calculated for each
parameter, namely, the effort and the influence. The effort relates to the number
of parameters that have to be known in order to solve another parameter. The
influence is related to the number of parameters that can be solved if a given
parameter is known. The algorithm finds a solving order by assessing which
parameters have low efforts and high influences. The algorithm has demonstrated
to be effective in underconstrained problems.

By integrating all these methods, a new Computational Design Synthesis
methodology is presented: CDS by Complexity Management. The methodology
is demonstrated by two implementations. One is the case study of this research:
design of cooling systems for injection molding (termed CSIM design). The sec-
ond is a preliminary generic implementation. The latter permits automating a
design problem by entering the TADD model of a problem instance.

Final Remarks

From a general point of view, two types of methods are required for automating
design problems:

• Solving strategy: focus on determining road maps indicating the order in
which elements and parameters are instantiated.

• Instantiating elements and parameters: regard instantiation of elements and
parameters such that the goals of the design are meet. Examples are random
generation, case based selection, optimization techniques, etc.

Furthermore, automating methods can also be classified into static or dynamic.
Static methods consist in solving first the strategy, and latter the instantiation.
For example, evolutionary methods (described in Chapter 2) consist of a fixed
strategy, having a random instantiation of parameters. Dynamic methods de-
termine the strategy as the elements and parameters of the problem are being

145

Chapter 10. Conclusions & Recommendations

instantiated, thus, in an integrated fashion. For example, A-based design (de-
scribed in Chapter 2) is a dynamic method, as both the solving strategy and
instantiation of elements and parameters occurs as the problem is being solved.

Using these classifications, the work on complexity management presented in
this thesis focused on determining solving strategies using a static approach. The
main contribution is that it provides a generic approach for automating artifac-
tual design problem. The integration of these methods has the advantage that
it permits the reuse of existing problem formulation, the use of standard solving
methods, and the development of computer based design tools. Furthermore, it
has been demonstrated that these techniques can be used in a collaborative fash-
ion for automating the generation of solutions by managing design complexities,
corroborating the third hypothesis driving the research presented in this thesis.

10.2 Recommendations

Two main lines of further research have been identified: one is towards the devel-
opment of CAS, and another deals with the automation of CSIM design. In this
section, the recommendations firstly focus on the development of generic methods
for design automation, and secondly on transforming the existing CSIM designer
prototype into a tool for standard usage.

Towards CAS

In order to achieve full automation of artifactual routine design, it is required to
research the complexity of problems that are represented in the domain of fields,
spatial and shapes. A possible approach for doing so consists in collecting problems
with such characteristics and assembling its corresponding TARD models. As
TARD is based on an ontology that considers these domains of representations,
it can now also be used for understanding its complexity characteristics. There
is also a need to understand the relations between algorithms for instantiating
elements/parameters and the domains of design representations.

From the point of view of developing general propose CAS systems, the fol-
lowing road map is proposed:

1. At present, TARD models are implemented in programming time. A user
interface for implementing TARD models would lower the human effort
required for implementing new problems. The resulting software would
serve as experimental setup for testing new methods and algorithms.

2. Integrate functional representations into TARD to enable high level abstrac-
tion reasoning for engineering design problems.

3. Develop a software architecture that permits plugging-in new algorithms for
both solving strategies and instantiating elements and parameters.

146

10.2 Recommendations

4. Explore the possibility of using TARD to represent functions and behav-
iors. This could be used as framework for researching methods for automat-
ing innovative and creative designs. This would also enable Internet based
searches for components, constraints, and analysis relations.

This road map represents an exiting field of further research, with a possible
large impact in current design practice.

CSIM Design

The current implementation of CSIM design generates solutions that cover a large
portion of the solution space. However, many of the generated solutions are not
realistic in terms of its applicability. This problem has three causes. One is the
lack of constrains imposed to the instantiation process. Another is the types of
instantiating algorithm used for the automatic generation. The third cause is that
the analysis of solutions is based on a qualitative method. It is recommended to
tackle these problems by:

1. Introducing new pattern based rules by further assessing the knowledge used
by expert designers.

2. Implementing other instantiating algorithms, as for example Genetic Algo-
rithms. The idea is to let GA identify combinations of absorber channels
that maximizes the heat abortion of the cooling system while minimizing
temperature differences in the part.

3. Developing a new analysis method. At the moment this thesis is being writ-
ten, an analysis method based on a multigrid approach is being developed
to solve this problem.

By researching these issues, a new tool can be obtained that fully automates
the design of CSIM.

147

Acknowledgments

In the last four years, I think the most difficult question somebody could make
me was “and tell me, what are you doing?” I never knew how to answer it
correctly. On the one hand, if I would say “I am doing a PhD”, people would
respond “so, you are still studying”. On the other hand, if I would answer “I work
as researcher”, people would say “doing what?”, and I would respond “doing a
PhD”, getting again the answer “ah, so..., you are still studying”.

Knowing I am about to finish my PhD made me feel relived I will finally stop
being a “student”. One less in the list of difficult questions to answer. However,
I have been confronted now with an even more difficult question: “how can I
acknowledge all the people that have given me their support during these last
four years in one or two pages?” A fair answer would be saying that this is not
possible. However, now that I will officially become a researcher, I cannot say
this without having given it a try.

This thesis is part of the research project “Smart Synthesis Tools”, started in
2005. The author gratefully acknowledges the support of the Dutch Innovation
Oriented Research Program ”Integrated Product Creation and Realization (IOP-
IPCR)” of the Dutch Ministry of Economic Affairs.

Professor Fred van Houten, thanks for the nice discussions and for helping me
understand the world of design from a more general perspective. Thank you also
for your confidence in my research and in me.

Professor Tomiyama, in one of our first meetings you described my research
as translating design problems from how much statements to how many ones. As
the title of this thesis suggests, I still believe this is the best way to describe it.
Thanks you for sharing your insights in the field of design research.

Begeleidingscommissie, thank you for showing me the realities of the design
processes at industry.

Mi Linda (Diru), siempre me has apoyado y motivado a cumplir mis sueños.
Gracias por querer entender siempre que es lo que estaba investigando. Gracias
por mostrarme otras perspectivas, y hacerme preguntas dif́ıciles. Gracias por

149

Chapter 10. Conclusions & Recommendations

acompañarme en las noches de trasnocho. Por eso, y mucho mas, este nuevo
logro es tan tuyo como mı́o. Te agradezco todo el amor y la paciencia que me has
brindado en nuestros años juntos. Gracias.

Papa y mama, ustedes han sido el mejor ejemplo de que con principios, trabajo,
esfuerzo y motivación se es capaz de alcanzar cualquier meta. Les agradezco el
siempre haber estado con nosotros, sin necesariamente estar f́ısicamente . A
ustedes también, much́ısimas gracias.

Hermanos, Maite y Rudy, gracias a ambos por estar siempre pendientes de su
hermano. A pesar de la distancia no hemos dejado de compartir muchos momentos
bonitos.

Opa, Oma, grote Rudy, Monique, Marion, Ron, Nahidu en Demi, bedankt
voor alle steun en gezelligheid in de afgelopen jaren. Het is heel fijn om ook
familie in Nederland te hebben.

Sra. Siran y Sr. Victor, les agradezco mucho la confianza que siempre han
depositado en mı́.

Gracias a todos mis t́ıos y primos en Venezuela.
I would like to personally thank my direct tutor, Hans. Thank you for guiding

me during this academic journey. Your pragmatism really helped me developing
this research. Furthermore, the Friday’s afternoon wine was a good source of
inspiration and motivation.

Fokke, I really enjoyed discussing with you my ideas. I enjoyed even more
getting your feedback.

Frans, Georg and Sipke, thank you for showing me the power of exchanging
knowledge and techniques from one field to another to find easy ways to solve
what might seem as a difficult problem. You were good Friday’s afternoon wine
companions.

Inge and Ans, thank you for your guidance and support. Thanks you also for
showing me the insights of the UT, CTW and OPM organizations.

Two important people I also have and want to thank are Wouter and Wessel.
Thank you for the nice discussions, your jokes, and most importantly, thank you
for offering me your friendship.

Maarten, Matteijs and Valentina, I really enjoyed working with you in this
project. Robert, thanks for always being creative. Boris, thanks for all the nice
smoking moments and chats. Thanks to all the department’s colleges for the
nice chats and cakes. Jorge y Nestor, gracias por las largas horas de amenas
discusiones, y por mantener nuestra amistad. Martijn, thanks for offering me
your friendship in these years. A los venezolanos en Holanda, Mariana, Ivan y
Ana Maria, gracias por todos los momentos cheveres. Gert Jan, Marco, Klass Jan
and Stefan, thank you taking part in my research project and for delivering such
good results.

I could continue this list for pages and pages, but unfortunately I have to put
now an end to it. However, to finish, I want to thank all the people who once
asked me what was that what I was doing. Searching constantly for an answer
helped me understand what is that what I have done.

150

List of References

[1] J. Allison, M. Kokkolaras, M. Zawislak, and P. Y. Papalambros. On the
use of analytical target cascading and collaborative optimization for complex
system design, 2005.

[2] E. K. Antonsson and J. Cagan. Formal Engineering Design Synthesis. Cam-
bridge University Press, 2001.

[3] L. B. Archer. The need for design education. Royal College of Art, 1973.

[4] J. Cagan, M. I. Campbell, S. Finger, and T. Tomiyama. A framework for
computational design synthesis: Model and applications. Journal of Com-
puting and Information Science in Engineering, 5(3):171–181, 2005.

[5] J. Cagan, I. E. Grossmann, and Hooker. A conceptual framework for com-
bining artificial intelligence and optimization in engineering design. Research
in Engineering Design, 9:20–34, 1997.

[6] M. I. Campbell, J. Cagan, and K. Kotovsky. Agent-based synthesis of electro-
mechanical design configurations. Journal of Mechanical Design, 122(61),
2000.

[7] M. I. Campbell, J. Cagan, and K. Kotovsky. The a-design approach to man-
aging automated design synthesis. Research in Engineering Design, 14:12–24,
2003.

[8] M. I. Campbell and R. Rai. A generalization of computational synthesis
methods in engineering design. AAAI Spring Symposium Series, 2003.

[9] A. Chakrabarti. Engineering Design Synthesis: Understanding, Approaches
and Tools. Springer Verlag, London, 2002.

151

LIST OF REFERENCES

[10] W. M. Chan, L. Yan, W. Xiang, and B. T. Cheok. A 3d cad knowledge-
based assisted injection mould design system. The International Journal of
Advanced Manufacturing Technology, 22(5):387–395, 2003.

[11] B. Chandrasekaran, A. Goel, and Y. Iwasaki. Functional representation as
design rationale. IEEE Compute, 26:48–56, 1993.

[12] L. D. Clive. Engineering design: a synthesis of views. Cambridge University
Press, 1995.

[13] A. G. Cohn and S. M. Hazarika. Qualitative spatial representation and rea-
soning: An overview. Fundam. Inf., 46(1-2):1–29, 2001.

[14] SolidWorks Corporation. SolidWorks 2007 API Documentation. SolidWorks
Corporation, 2007.

[15] M. B. Douglas. Plastic Injection Molding: Manufacturing Startup And Man-
agement, volume 4. Sme, 1999.

[16] H. Draijer and F. G. M. Kokkeler. Heron’s synthesis engine applied to link-
age design- the philosophy of watt software. In Design Engineering Technical
Conferences and Computer and Information in Engineering Conference, vol-
ume DETC2002/MECH-34373, Montreal, 2002.

[17] J. Duarte. Customizing mass housing: a discursive grammar for Siza’s
Malagueira houses. Massachusetts Institute of Technology, 2000.

[18] Z. Fan, J. Wang, K. Seo, J. Hu, R. Rosenberg, J. Terpenny, and E. Good-
man. Automating the hierarchical synthesis of mems using evolutionary ap-
proaches. Evolvable Machines, pages 129–149, 2005.

[19] J. S. Gero and U. Kannengiesser. The situated function-behaviour-structure
framework. Design Studies, 25:373–391, 2004.

[20] J. Gips. Computer implementation of shape grammars. NSF/MIT Workshop
on Shape Computation, 1999.

[21] V. Goel and P. Pirolli. The structure of design problem spaces. Cognitive
Science: A Multidisciplinary Journal, 16(3):395 – 429, 1992.

[22] J. Greeno. Natures of problem-solving ability. Handbook of learning and
cognitive processes, 5:239–270, 1978.

[23] Weiss M.P. Hari A. Icdm an integrated methodology for the conceptual
design of new systems. In Systems Engineering / Test and Evaluation Con-
ference, 2004.

[24] A. Hatchuel and B. Weil. C-k design theory: An advanced formulation.
Research in Engineering Design, 19(4):181–192, 2009.

152

LIST OF REFERENCES

[25] V. Hubka and E. W. Eder. Theory of Technical Systems: A Total Concept
Theory for Engineering Design. Springer, 1988.

[26] A. Jaklic, A. Leonardis, and F. Solina. Segmentation and recovery of su-
perquadrics series. Computational Imaging and Vision, 20:12–39, 2001.

[27] J. M. Jauregui-Becker, H. Tragter, and F.J.A.M. van Houten. Structuring
and modeling routine design problems for computational synthesis develop-
ment. In CIRP Design Conference on Design Synthesis 2008, 2008.

[28] J. M. Jauregui-Becker, H. Tragter, and F.J.A.M. van Houten. Toward a
bottom-up approach to automate the design of cooling systems for injection
molding. In CAD09, Reno, Nevada, USA, 2009.

[29] J. M. Jauregui-Becker, W. W. Wits, and F.J.A.M van Houten. Reducing
design complexity of multidisciplinary domain integrated products: a case
study. In 41st CIRP Conference on Manufacturing Systems, volume 1, pages
149–154, 2008.

[30] C. Jermann, G.Trombettoni, B. Neveu, and P. Mathis. Decomposition of
geometric constraint systems: a survey. Int. J. Comput. Geometry Appl.,
16(5-6):379–414, 2006.

[31] J. H Johnson. Multidimensional networks in the science of the design of
complex systems. In ECCS 2005 Satellite Workshop: Embracing Complexity
in Design, pages 33–48, 2005.

[32] J. R. Koza, M. J. Streeter, and M. A. Keane. Automated synthesis by means
of genetic programming of human-competitive designs employing reuse, hier-
archies, modularities, development, and parameterized topologies. In The
2003 AAAI Spring Symposioum: Computational Synthesis: From Basic
Building Blocks to High Level Functionality, 2003.

[33] V. Kumar. Algorithms for constraint satisfaction problems: a survey. AI
magazine, 13(1):32–44, 1992.

[34] T. Kurtoglu and M. I. Campbell. A graph grammar based framework for
automated concept generation. In The International Design Conference 2006,
pages 61–68, Paris, 2006.

[35] T. Kurtoglu and M. I. Campbell. Automated synthesis of electromechanical
design configurations from empirical analysis of function to form mapping.
Journal of Engineering Design, 20(1):83–104, 2009.

[36] H. Y. Lee and T. H. Cho. A* - based layout design for gratings allocation.
Computer-Aided Design, 40(4):455–464, 2008.

153

LIST OF REFERENCES

[37] C. L. Li and C. G. Li. Manufacturable and functional layout design of cooling
system for plastic injection mould. In International conference on manufac-
turing automation, pages 47–54, 2004.

[38] C. L. Li and C. G. Li. Plastic injection mould cooling system design by the
configuration space method. Computer-Aided Design, 40(3):334–349., 2008.

[39] C. L. Li, C. G. Li, and A. C. K. Mok. Automated layout design of plastic
mold cooling system. Computer Aided Design, 37:645–662, 2005.

[40] CoreTech System Co. Ltd. Moldex3d/solid-rim reference manual,, 2003.

[41] A. Manish and C. Jonathan. On the use of shape grammars as expert systems
for geometry-based engineering design. Artifitial Intelligence in Engineering
Design and Manufacturing, 14(5):431–439, 2000.

[42] J. P. McCormack, J. Cagan, and C. M. Vogel. Speaking the buick language:
capturing, understanding, and exploring brand identity with shape gram-
mars. Design Studies, 25(1):1–29, 2004.

[43] Moka consortium Melody Stokes. Managing Engineering Knowledge:
MOKA. Professional Engineering Publication, 2001.

[44] M. Menges. How to make injection molds. Hanser, 1986.

[45] S. Minderhoud and P. Fraser. Shifting paradigms of product development
in fast and dynamic markets. Reliability Engineering & System Safety,
88(2):127–135, 2005.

[46] C. K. Mok, K. S. Chin, and John K. L. Ho. An interactive knowledge-
based cad system for mould design in injection moulding processes. The
International Journal of Advanced Manufacturing Technology, 17(1):27–38,
2001.

[47] J. Moss, J. Cagan, and K. Kotovsky. Learning from design experience in an
agent-based design system. Research in Engineering Design, 15:77–92, 2004.

[48] G.J. Muller. Design objectives and design understandability, 2007.

[49] M. M. Olthof. Identifying and formalizing routine design problems in in-
dustrial settings. PhD thesis, University of Twente, Faculty of Engineering
Design, OPM-877, 2008.

[50] M. M. Olthof, J.M. Jauregui-Becker, H. Tragter, and F.J.A.M. van Houten.
Knowledge acquisition of routine design problems in industrial settings. In
10th European Conference on Knowledge Management, Vicenza, Italy., 2009.

154

LIST OF REFERENCES

[51] S. Orsborn, J. Cagan, R. Pawlicki, and R. Smith. Creating cross-over vehi-
cles: defining and combining vehicle classes using shape grammars. Artificial
Intelligence in Engineering Design and Manufacturing, 20(3):217–246, 2006.

[52] G. Pahl, W. Beitz, J. Feldhusen, and K. H. Grote. Engineering Design: A
Systematic Approach. Springer, 2007.

[53] P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design- Modeling
and Computation. Cambridge University press, 2000.

[54] Van Parunak. Case grammar: A linguistic tool for engineering agent-based
systems. Unpublished white paper at http://www.iti.org/ van/ asegram.ps,
1995.

[55] C. Petzold. Programming Microsoft Windows with C#. Microsoft Press,
2002.

[56] S. S. Rao, A. Nahm, S. Zhengzhong, X. Deng, and A. Syamil. Artificial
intelligence and expert systems applications in new product development- a
survey. Kluwer Academic Publishers, 1999.

[57] W. O. Schotborgh. Knowledge engineering for design automation. University
of Twente, 2009.

[58] W. O. Schotborgh, F. G. M. Kokkeler, H. Tragter, M. J. Bommhoff, and
Fjam van Houten. A generic synthesis algorithm for well-defined parametric
design. Proceedings of the 18th CIRP Design Conference, 2008.

[59] W. O. Schotborgh, F. G. M. Kokkeler, H. Tragter, and Fjam van Houten. A
bottom-up approach for automated synthesis tools in the engineering design
process. Proceedings of International Design Conference 2006, pp. 349-356,
2006.

[60] W. O. Schotborgh, H. Tragter, F. G. M. Kokkeler, Fjam van Houten, and
T. Tomiyama. Towards a generic model of smart synthesis tools. Proceedings
of the CIRP Design Seminar 2007, 2007.

[61] W.O. Schotborgh, M.H.L. Roring, D.R. Grigoras, H. Tragter, F.G.M.
Kokkeler, and F.J.A.M. van Houten. A development methodology for para-
metric synthesis tools. In ASME IDETC&CIE, 2007.

[62] R. N.S. Schumacher. Design formulas for plastic engineers. Hanser Publish-
ers, 2004.

[63] K. Shea and J. Cagan. The design of novel roof trusses with shape annealing:
assessing the ability of a computational method in aiding structural designers
with varying design intent. Design Studies, 20:3–23, 1999.

155

LIST OF REFERENCES

[64] K. Shea and J. Cagan. Languages and semantics of grammatical discrete
structures. AI EDAM, 13(4):241–251, 1999.

[65] H. Simon. The structure of ill structured problems. Artificial Intelligence,
4(3):181–201, 1973.

[66] Jaroslaw Sobieszczanski, S. Emiley Mark, S. Agte Jeremy, and R. Sandusky
Jr Robert. Advancement of bi-level integrated system synthesis (bliss). Tech-
nical report, NASA Langley Technical Report Server, 2000.

[67] Autodesk Software. http://www.moldflow.com/stp/, 2009.

[68] A. Soman, S. Padhye, and M.I. Campbell. Toward an automated approach
to the design of sheet metal components. AI EDAM, 17(03):187–204, 2003.

[69] B. Spence, L. Tweedle, and H. Dawkes. Visualisation - enhancing qualitative
design. In CHI ’95, 1995.

[70] P. Sridharan and M. I. Campbell. A grammar for function structures. Pro-
ceedings of the ASME Design Engineering Technical Conference, 3:41–55,
2004.

[71] A. C. Startling and K. Shea. A parallel grammar for simulation-driven me-
chanical design synthesis. International Design Engineering Technical Con-
ferences 2005, 2(A):427–426, 2005.

[72] N. P. Suh. Axiomatic design theory for systems. Research in Engineering
Design, 10, pp 189-209, 1998.

[73] N. P. Suh. Complexity in engineering. Annals of CIRP, 54(2): 581-598, 2005.

[74] N. P. Suh. Complexity: Theory And Applications. Mit-Pappalardo Series in
Mechanical Engineering. Oxford University Press, 2005.

[75] S. Szykman and R. D. Sriram. Design and implementation of the web-enabled
nist design repository. ACM Trans. Internet Technol., 6(1):85–116, 2006.

[76] S. N. Talukdar, S. Sachdev, and E. Camponogara. A collaboration strategy
for autonomous, highly specialized agents. Proceedings of the SPIE, Sympo-
sium on Intelligent Systems & Advanced Manufacturing, 1997.

[77] T. Tomiyama. Dealing with complexity in design: A knowledge point of
view. Design Methods for Practice, pages 137–146, 2006.

[78] T. Tomiyama. Intelligent computer-aided design systems: Past 20 years and
future 20 years. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing, 21:27–29, 2007.

156

LIST OF REFERENCES

[79] T. Tomiyama and H. Yoshikawa. Extended general design. Centre For Math-
ematics and Computer Science, Technical Report CS-R8604, 1986.

[80] K. Ueda. Synthesis and emergence - research overview. Artificial Intelligence
in Engineering, 15:321–327, 2001.

[81] D. G. Ullman. The Mechanical Design Process. McGraw-Hill, 1992.

[82] D. G. Ullman. Toward the ideal mechanical engineering design support sys-
tem. Research in Engineering Design, 13(2):55–64, 2002.

[83] K. Ulrich and S. Eppinger. Product Design and Development. McGraw-Hill,
2008.

[84] Y. Umeda and T. Tomiyama. Fbs modeling: Modeling scheme of function
for conceptual design. In Working Papers of the 9th Int. Workshop on Qual-
itative Reasoning About Physical Systems, pages 271–278, Amsterdam, 1995.

[85] Y. Umeda and T. Tomiyama. Functional reasoning in design. AI in Design,
12(2):41–48, 1997.

[86] H. Yoshikawa. General design theory and a cad system. Man-Machine Com-
munication in CAD/CAM, 1981.

[87] W. J. Zhang, Y. Lin, and N. Sinha. On the function-behavior-structure model
for design, 2005.

[88] Y. Zhang, E. K. Antonsson, and A. Martinoli. Evolutionary engineering de-
sign synthesis of on-board traffic monitoring sensors. Research in Engineering
Design, 19(2):113–125, 2008.

[89] L. Zhen, T. Liyong, W. Michael Yu, and W. Shengyin. Shape and topol-
ogy optimization of compliant mechanisms using a parameterization level set
method. Journal of Computation in Physics, 227(1):680–705, 2007.

157

Part V

Appendices

159

Appendix A
TARD and ToSE Example

A.1 Equation Generator

This example concerns the generation of equations. The idea is to have a TARD
model capable of deriving expressions like the following:

a+ b · c− d = e/f

p1 + p2 ≥ p3 · p4 − p5

One application of this model is the development of algebraic equations match-
ing a predefined data set.

A.2 TARD Model

The appearance of an equation directly resembles its topology, which consists
of variables that are related by operators. Therefore, the TARD model can be
assembled by defining a single element class which represents all variables. Due
to the fact that the operators relate two variables with each other, the choice is to
denote a C-relation for each of the different operators. In a simple structure like
this, the proximity relations deduce their contribution to the boundary elements
from the element cardinality of the parent element, which is here equal to one.

eprox
L = eprox

R = eeq = 1

Because the operators relate the variables in a one on one fashion, the car-
dinalities i and j are equal to one in each relation. All other cardinalities are
unknown. This can be avoided by splitting the element denoting the variables
into two elements, representing the parameters on the left and right hand side of

161

Chapter A. TARD and ToSE Example

L

=

EQ

L-

L*

L+

L/

R R-

R*

R+

R/

>
<

P

=

EQ

-

*

+

/

>

<

Figure A.1: TARD model of the design of equations

the equation respectively. The corresponding diagram is shown in Figure A.1. In
this way, it is only possible to select between either one of =, < or > once.

A.3 ToSE Equations

Using the structure in Figure A.1, two balance and vertical equations can be
derived. Since both elements are boundary elements, the proximity relations
have to taken into account. The balance equations become:

L : jL+ · lL+ + jL− · lL− + jL∗ · lL∗ + jL/ · lL/ + eprox
L =

iL+ · lL+ + iL− · lL− + iL∗ · lL∗ + iL/ · lL/ + i= · l= + i> · l> + i< · l<

R : iR+ · lR+ + iR− · lR− + iR∗ · lR∗ + iR/ · lR/ + i= · l= + i> · l> + i< · l< =

jR+ · lR+ + jR− · lR− + jR∗ · lR∗ + jR/ · lR/ + eprox
R

With i = 1 and j = 1 this simplifies to:

L : 1 = l= + l> + l<

R : l= + l> + l< = 1

162

A.4 Generating Solutions

These balance equations resemble the limitations in using the operators =, >
and <. This proves the correct integration of the contains into the diagram by
splitting the system into two elements. Accordingly, the vertical equations for L
and R are:

eL = [iL+ · lL+ + iL− · lL− + iL∗ · lL∗ + iL/ · lL/ + i= · l= + i> · l> + i< · l<] · eEQ

eR = [jR+ · lR+ + jR− · lR− + jR∗ · lR∗ + jR/ · lR/ + j= · l= + j> · l> + j< · l<] · eEQ

With i , j and eEQ equal to 1, this simplifies to:

eL = lL+ + lL− + lL∗ + lL/ + l= + l> + l<

eR = lR+ + lR− + lR∗ + lR/ + l= + l> + l<

The result is a set of 3 equations (the balance equations are the identical) and
13 unknowns. However, since all cardinalities l=, l> or l< can be equal to 1, the
balance equation can be used to calculate two cardinalities if one is known. Thus,
this is an under-constraint with 8 degrees of freedom.

A.4 Generating Solutions

As shown to Figure A.3, a sequence can be generated with the Local Grammar
Method. Accordingly, the values for all cardinalities l of each C-relation are
calculated by using the sequence equations. Figure A.2 shows the available rules
for the local grammar generation, where rule 1 to 7 apply for the element L and
rule 8 to 11 for element R. Figure A.3 shows the stepwise generation of a possible
solution.

The resulting sequence of the example gives results in:

lL+ = 1, lL− = 2, lL∗ = 1, lL/ = 2, lR+ = 0, lR− = 0

lR∗ = 1, lR/ = 0, l= = 1, l< = 1, l> = 1

By denoting the instances of both, L and R, as equation parameters p, the
equation generated by this example yields:

p1 · p2 + p3 · p4 = p5 · p6

In case p1 = p2 = a, p3 = p4 = b and p5 = p6 = c, this equation becomes the
equation of Pythagoras:

a2 + b2 = c2

163

Chapter A. TARD and ToSE Example

L+

L L
L-

L L
L*

L L
L/

L L

=

L R
>

L R

<

L Lrule 7:
L+

R R
L-

R R
L*

R R
L/

R R

rule 8:

rule 9:

rule 10:

rule 11:

rule 1:

rule 2:

rule 3:

rule 4:

rule 5:

rule 6:

Figure A.2: Rues in equation generator grammar

Current element Grammar rules Sequence

L

Step

1 L*1 , 2 , 3 , 4 , 5 , 6 , 7

L2 L*-L+1 , 2 , 3 , 4 , 5 , 6 , 7

L3 L*-L+-L*1 , 2 , 3 , 4 , 5 , 6 , 7

L4 L*-L+-L*-=1 , 2 , 3 , 4 , 5 , 6 , 7

R5 L*-L+-L*-=-R*8 , 9 , 10 , 11

R6 finish

Figure A.3: Example sequence generation

164

Appendix B
ToSE for CSIM

B.1 TARD Model

B.1.1 Elements

The base elements of this TARD model are the point elements: blue, green and
brown. Combination of these points are used to create absorber channel, connec-
tor channel or input-/output channel. Channel elements are connected to among
each others to form the abstraction-group cooling circuit. Finally, the entire cool-
ing system is represented by the zero level element.

B.1.2 C-Relations

The first C-relation represents the connection of multiple cooling circuits into a
single cooling system. The abstractiongroup described by channels is significantly
more complex. The assembly of each circuit begins with an input channel. How-
ever, this channel can either be connected to a connector channel or directly to
an absorber channel, represented by C2 and C3. For the output channel, the
situation is the other way round, because it is connected from either of the two
channels, as constituted by C8 and C9. The two channel elements might be either
connected to itself respectively or with each other in both directions, ensuring a
limitless variety of possible combinations.

B.1.3 Abstraction-groups

The abstraction-group describing the assembly of an input channel element con-
tains two alternative c-relations connecting the brown point to a green or blue
point. The c-relation in the abstraction-group of the absorber channel only con-
nects to blue points, since all parts of this channel type fulfill the task of heat

165

Chapter B. ToSE for CSIM

absorption. Connector channel are assembled by connecting green points or green
points with a blue point. Finally, the assembly of the output channel can start
with a blue or green point, which is connected to a brown point by C16 or C17.

In summary, the network is composed of 6 complex abstractiongroups. These
groups are distributed over 3 levels of abstraction and contain 14 element classes.
All cardinalities i and j are equal to 1.

B.2 Balance equations

The proximity relations for the local cardinality of each boundary element is 1.
This indicates that the sequence of each abstraction-group begins with a single,
non-parallel element instance. Five balance equations can be established for the
levels 1 and 2:

CoolingCircuit:
eprox + jC1 · lC1 = iC1 · lC1 + eprox

InputSegment:
eprox = iC2 · lC2 + iC3 · lC3

AbsorberChannel:

jC2 · lC2 + jC4 · lC4 + jC7 · lC7 = iC4 · lC4 + iC5 · lC5 + iC9 · lC9

ConnectorChannel:

jC3 · lC3 + jC5 · lC5 + jC6 · lC6 = iC6 · lC6 + iC7 · lC7 + iC8 · lC8

Outputsegement:
jC8 · lC8 + jC9 · lC9 = eprox

With eprox = 1 and i = j = 1, these equations can be writen as:

CoolingCircuit:
lC1 = lC1

InputSegment:
1 = lC2 + lC3

AbsorberChannel:

lC2 + lC4 + lC7 = lC4 + lC5 + lC9

ConnectorChannel:

lC3 + lC5 + lC6 = lC6 + lC7 + lC8

166

B.2 Balance equations

In
p

u
tS

e
g

m
e

n
t

C1

B
lu

e
P

o
in

t

H
1

C11

C
o

o
lin

g
S

y
s
te

m

H
0

C
o

o
lin

g
C

ir
c
u

it

A
b

s
o

rb
e

rC
h

a
n

n
e

l
C

o
n

n
e

c
to

rC
h

a
n

n
e

l
O

u
tp

u
tS

e
g

m
e

n
t

C2

C3 C4

C6

C5
C7

C8

C9

G
re

e
n

P
o

in
t

B
ro

w
n

P
o

in
t

C10

B
lu

e
P

o
in

t
G

re
e

n
P

o
in

t
B

ro
w

n
P

o
in

t

C17

C16

B
lu

e
P

o
in

t

C12

B
lu

e
P

o
in

t
G

re
e

n
P

o
in

t

C14

C13

H
2

H
3

H
4

H
5

L
e

v
e

l
0

L
e

v
e

l
1

L
e

v
e

l
3

L
e

v
e

l
2

C15

Figure B.1: TARD model of CSIM problem.

167

Chapter B. ToSE for CSIM

Outputsegement:
lC8 + lC9 = 1

The determination of the balance equation for the 3rd level requires extra atten-
tion:

• Given that the three different point types are repeated in different abstraction-
groups, each point type is treated as a different element class.

• As the abstraction-groups H2 and H5 connect blue or green points with
brown points, each of these requires two proximity relations. For abstraction
group H2 this is:

eprox
blue = 1− lC11

and
eprox
green = 1− lC10

For abstraction-group H5 this is:

eprox
blue = 1− lC17

and
eprox
green = 1− lC16

• As H4 is a complex abstraction-group, and the sequences can either begin or
end with any of the elements, it is not possible to define proximity relations.
This increases the uncertainty of the design problem by adding an unknown
cardinality.

By taking this considerations, the balance equation of H2 are:

BrownPoint:
eprox = iC10 · lC10 + iC11 · lC11

BluePoint:
jC10 · lC10 = e(bp)prox

GreenPoint:
jC11 · lC11 = eprox

gp

With eprox = 1, eprox
gp − lC10 = 1, eprox

bp − lC11 = 1, and i = j = 1, these equations
become:

168

B.2 Balance equations

BrownPoint:
1 = lC10 + lC11

BluePoint:
lC10 = 1− lC11

GreenPoint:
lC11 = 1− lC10

As it can be noticed, this equations are equivalent, which results in one equation
representing the balance equation for all this elements.

For H3, the balance equation is:

BluePoint:

eprox + jC12 · lC12 = iC12 · iC12 + eprox ⇒ 1 + l12 = l12 + 1

Taking into consideration the 3rd aspect mentioned above, the balance equations
of the abstraction-group H4 are:

BluePoint:

eprox
bp + jC15 · lC15 = iC13 · lC13 ⇒ eprox

bp + lC15 = lC13

GreenPoint:

eprox
gp +jC13·lC13+jC14·lC14 = iC14·lC14+iC15·lC15 ⇒ eprox

gp +lC13+lC14 = lC14+lC15

The balance equations of H5 are:

BluePoint:
eprox
bp = iC16 · lC16 ⇒ 1− l17 = l16

GreenPoint:
eprox
gp = iC17 · lC17 ⇒ 1− l16 = l17

BrownPoint:
iC16 · lC16 + iC17 · lC17 = eprox ⇒ l16 + l17 = 1

Again here, all three equations are the same.

169

Chapter B. ToSE for CSIM

B.3 Vertical equations

The vertical are assembled for the base elements by considering that for all c-
relations i = j = 1.

In abstraction-group H2:

ebrownPointH2 = (lC10 + lC12) · (lC2 + lC3) · lC1

egreenPointH2 = lC11 · (lC2 + lC3) · lC1

ebluePointH2 = lC10 · (lC2 + lC3) · lC1

In abstraction-group H3:

ebluePointH3 = lC12 · (lC4 + lC5 + lC9) · lC1

In abstraction-group H4:

ebluePointH4 = lC13 · (lC8 + lC6 + lC7) · lC1

egreenPointH4 = (lC14 + lC15) · (lC8 + lC6 + lC7) · lC1

In abstraction-group H5:

ebrownPointH5 = (lC16 + lC17) · (lC8 + lC9) · lC1

egreenPointH5 = lC17 · (lC8 + lC9) · lC1

ebluePointH5 = lC16 · (lC8 + lC9) · lC1

B.4 Summary

The ToSE consists of 18 equations, composed of 9 balances equations and 9 verti-
cal equations. There are 28 cardinalities (17 l, 2 proximity relations and 9 element
global cardinalities). As this design problem has 10 degrees of freedom and 2 com-
plex abstract groups, it presents both time-dependent combinatorial complexity
and time-independent imaginary complexity.

170

Appendix C
Generic CDS-CS
Implementation

C.1 TARD Implementation

The architecture of the TARD implementation consist of two types of classes for
each of the building block, namely, a building block class and a building block-
instance class. For example, Figure C.1 shows that the building block element
is implemented by an element class and an element-instance class. By doing so,
elements in the problem class are instances of the generic elements class (1st order
instances), while elements in the problem solution are instances of the element-
instance class (2nd order instances). Furthermore, each of this classes has variables
describing the building blocks cardinalities, references and parameters. This is
shown in Figure C.2, where a simple UML diagram of the six topology classes
is presented. As shown, an super class “ModelComponent” accommodates the
building blocks classes. Figure C.3 shows the class description of these building
blocks.

By using this architecture, a problem class is represented by making a 1st

order network, while problem instances and problem solutions are instances of
the 2nd order network. For the elements this means that the amount of 1st order
instances equals the amount of component types and abstraction-groups, whereas
the amount of 2nd order instances equals the sum of all element cardinalities
within the 1st order instances.

171

Chapter C. Generic CDS-CS Implementation

element
Element

class 1

Element

class n...

Element

instance 1 ...
Element

instance m

instantiation

instantiation

element instance

class

C# class

component types

1
st

order instances

2
nd

order instances

Figure C.1: Architecture of the computer implementation of TARD building blocks:
class and instance.

-e

-e_local

-C-in
-C-out

-H-rel

-parameterTypes

Element

-E_in

-E_out

-i

-j
-relations

C-relation

-E_parent

-c_list

-l_list

-sequence
-rules

H-relation

-name

ModelComponent

-c_inst_in

-c_inst_out

-h_inst
-parameterValues

Element_instance

-E_inst_in

-E_inst_out

-relations

C-relation_instance

-E_inst_parent

-c_inst_list

H-relation_instance

Figure C.2: UML diagram of basic TARD building blocks.

172

C.2 ToSE Implementation

element

C-relation

H-relation

Element

class 1

Element

class n...

C-relation

class 1
C-relation

class n...

H-relation

class 1

H-relation

class n...

Element

instance 1 ...
Element

instance m

C-relation
instance 1 ...

C-relation

instance m

H-relation

instance 1 ...
H-relation

instance m

building blocks structure classes structure instances

instantiation instantiation

Figure C.3: Class structure of TARD building blocks

C.2 ToSE Implementation

ToSE is implemented at the hand of three classes, which are shown in Figure C.4.
These classes are:

• LocalCardinalityFunction: Objects of this class model the local cardi-
nality of an element. A variable identifies if the cardinality is derived using
incoming (IN) or outgoing (OUT) C-relations. It has a list with references
that allows it to calculate the local cardinality of an element.

• BalanceEquation: Objects of this class point to elements. It has two in-
stances of the localCardinalityEquation, one based on incoming C-relations
and another based on outgoing C-relations.

• VerticalEquation : Models the global cardinality of an element. It has a
list of localCardinalityFunctions. The number of entries in that list depends
on the level of abstraction of its element. It has a method to determine its
value at the hand of this list.

In order to illustrate how this classes allow the implementation of ToSE, Fig-
ure C.5 shows the ToSE objects of element E of the TARD model shown in
the same figure. The localCardinalityFunction relates the balanceEquation and
verticalEquation to the cardinalities e,el, i, j, l, which are defined in their corre-
sponding building blocks (element, C-relations and H-relations).

173

Chapter C. Generic CDS-CS Implementation

verticalEquation

ElementCardinality

List : LocalCardinalityEquations

localCardinalityFunction

element

Side (IN/OUT)

List : cardinalities

balanceEquation

element

 left_LocalCardFunction

 right_LocalCardFunction

Figure C.4: Diagrams of the equation and cardinality classes

174

C.2 ToSE Implementation

1
1

3
3

4
4

E
C

C
C

C
C

C
e

j
l

j
l

j
l

3
3

4
4

4
4

5
5

C
C

C
C

C
C

C
C

j
l

j
l

i
l

i
l

4
Ci

4
Cl

3
Cj

3
Cl

1
Cj

1
Cl

Fe
5

Ci
5

Cl
4

Cj
4

Cl

f(
e

E
)IN

f(
e

E
)O

U
T

f(
e

B
)IN

C
a

rd
in

a
lit

y

o
b

je
c
ts

L
o

c
a

l
c
a

rd
in

a
lit

y

fn
c
.
o

b
je

c
ts

B
a

la
n

c
e

-,
V

e
rt

ic
a

l

e
q

u
a

ti
o

n
 o

b
je

c
ts

v
e

rt
E

q
(E

)
b

a
lE

q
(E

)

re
fe

re
n

c
e

c
o

rr
e

s
p

o
n

d
s

E
q

u
a

ti
o

n
s

EB
1

D

C
3

F

C
5

C

C
2

A

C
1

0

20

C
4

Figure C.5: Object references (pointers) for ToSE equations.

175

	Cover.pdf
	Drawing1
	Page-1

	ThesisJaureguiDigital
	Titlepage
	Summary
	Samenvatting
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I Research Introduction
	1 Vision and Research Description
	1.1 Context: Computers in Engineering Design
	1.1.1 The Engineering Design Process
	1.1.2 The Role of Computers in Design

	1.2 Focus: Computer Aided Synthesis
	1.2.1 Story Board: Designing Wind Turbines with CAS
	1.2.2 CAS Properties
	1.2.3 CAS Development Challenges

	1.3 Scope: Artifactual Routine Design
	1.3.1 FBS model
	1.3.2 Classification of Design Problem

	1.4 Vision: Bottom-up Approach to CAS
	1.5 Challenge: Complexity in Routine Design
	1.5.1 Modeling Design Artifacts
	1.5.2 Modeling Design Problems
	1.5.3 Synthesis in Routine Design
	1.5.4 Complexity in Routine Design Problems

	1.6 Research: Managing Complexity In Routine Design
	1.6.1 Hypothesis
	1.6.2 Case Study
	1.6.3 Complexity Management Approach

	2 Research Positioning
	2.1 Field: Computational Design Synthesis
	2.1.1 General Method
	2.1.2 Grammars
	2.1.3 Agent Based Design
	2.1.4 Evolutionary Approaches
	2.1.5 PaRC

	2.2 The Problem: Complexity Management
	2.2.1 Complexity in Axiomatic Design
	2.2.2 Completeness of Information
	2.2.3 Complexity of Multi-disciplinarity
	2.2.4 Large Parametric Spaces

	2.3 Case Study: CSIM Design
	2.3.1 Cooling Design
	2.3.2 Related Work

	II Founding Frameworks
	3 Information and Models
	3.1 Introduction
	3.2 Types of Information
	3.3 Problem Formulation
	3.3.1 Example: CSIM Design

	3.4 Models in Artifactual Routine Design
	3.4.1 Models of Descriptions
	3.4.2 Models of Relations

	3.5 Common Design Problem Formulations
	3.5.1 Parametric Design
	3.5.2 Configuration Design
	3.5.3 Layout Design
	3.5.4 Shaping
	3.5.5 Topology Generation

	4 Design Structure and Complexity
	4.1 Introduction
	4.2 Structuring Routine Design Problems
	4.2.1 Structuring Framework
	4.2.2 Example: Spring Design

	4.3 Complexity in Routine Design
	4.3.1 Translating ADT Terms
	4.3.2 Model of Complexity
	4.3.3 Complexity of Problem Classes
	4.3.4 Complexity of Problem Instances
	4.3.5 Example: CSIM Design

	III Theories and Methods
	5 Managing Complexity I: Information Contents
	5.1 Introduction
	5.2 Method 1: FBS based Formulation
	5.2.1 Example: CSIM Design

	5.3 Method 2: ADT based Decomposition
	5.3.1 Functional Domain
	5.3.2 Physical Domain
	5.3.3 Example: CSIM Design

	6 Managing Complexity II: Representations
	6.1 Introduction
	6.1.1 Multi-level Networks
	6.1.2 Graph Grammars

	6.2 Theory 1: TARD Model
	6.2.1 Base definitions
	6.2.2 Building Blocks
	6.2.3 Types of abstraction-groups

	6.3 Example: Belt System Design
	6.3.1 Proximity Relation

	7 Managing Complexity III: Manipulating Elements
	7.1 Introduction
	7.2 Theory 2: Topology System of Equations
	7.2.1 Balance Equations
	7.2.2 Vertical Equations

	7.3 Method 4: The Local Grammar Method
	7.3.1 Grammar Rules and their Application
	7.3.2 Adding Complementary Rules
	7.3.3 Guiding the Search Process
	7.3.4 Creation vs. recognition

	7.4 Example: XRF Optical Path Design
	7.4.1 TARD Model
	7.4.2 Assembling ToSE
	7.4.3 Generating Sequences

	8 Managing Complexity IV: Manipulating Parameters
	8.1 Introduction
	8.1.1 Knowledge Graphs (KG)

	8.2 Method 5: KGM Solving Algorithm
	8.2.1 Knowledge Graph Matrix (KGM)
	8.2.2 Effort and Influence
	8.2.3 Parameter States
	8.2.4 KGM Transformations
	8.2.5 Identifying Driver and Driven
	8.2.6 The Algorithm

	8.3 Benchmarking
	8.4 Example: Compression Spring

	IV Results and Conclusions
	9 Integration and Implementation
	9.1 Introduction
	9.2 Methodology: CDS-Complexity Management
	9.2.1 Initialization Phase
	9.2.2 Generation Process
	9.2.3 Generic Implementation
	9.2.4 Example: Drive train Design

	9.3 Automating CSIM Design
	9.3.1 Synthesis Strategy
	9.3.2 Results

	10 Conclusions & Recommendations
	10.1 Conclusions
	10.2 Recommendations

	Acknowledgments
	List of References

	V Appendices
	A TARD and ToSE Example
	A.1 Equation Generator
	A.2 TARD Model
	A.3 ToSE Equations
	A.4 Generating Solutions

	B ToSE for CSIM
	B.1 TARD Model
	B.1.1 Elements
	B.1.2 C-Relations
	B.1.3 Abstraction-groups

	B.2 Balance equations
	B.3 Vertical equations
	B.4 Summary

	C Generic CDS-CS Implementation
	C.1 TARD Implementation
	C.2 ToSE Implementation

